Stationary Time Series Testing and Lag Selection Procedures

N. Bettache¹ C. Butucea¹

¹CREST

Half Day Student Talk

Nayel, Bettache (CREST)

Stationary Time Series

13th May 2022

1/24

1 Real-valued time series

2 Supplementary slides

Nayel, Bettache (CREST)

Real-valued time series

2 Supplementary slides

3 Vector-valued time series

Nayel, Bettache (CREST)

Stationary Time Series

13th May 2022 3 / 24

Consider X a p-dimensional gaussian vector such that $X \sim \mathcal{N}_p(0, \Sigma)$. • We assume that X is issued from a stationary process.

Consider X a p-dimensional gaussian vector such that $X \sim \mathcal{N}_p(0, \Sigma)$.

- We assume that X is issued from a stationary process.
- Σ has a Toeplitz structure, meaning each descending diagonal from left to right is constant.

Consider X a p-dimensional gaussian vector such that $X \sim \mathcal{N}_p(0, \Sigma)$.

- We assume that X is issued from a stationary process.
- Σ has a Toeplitz structure, meaning each descending diagonal from left to right is constant.
- The covariance matrix Σ has entries $\sigma_{i,j} = \text{Cov}(X^i, X^j) = \sigma_{|i-j|}$.

Observe repeatedly and independently n samples (X_1, \ldots, X_n) of the \mathbb{R} -valued time series of length p. We may consider n = 1

Consider $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_p(0, \Sigma)$. • $\forall i \text{ we denote by } X_i = (X_i^1, \ldots, X_i^p)$.

Consider
$$X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_p(0, \Sigma).$$

• $\forall i \text{ we denote by } X_i = (X_i^1, \ldots, X_i^p).$
• $\Sigma = [\sigma_{|i-j|}]_{1 \le i,j \le p}.$

Consider $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_p(0, \Sigma)$.

• $\forall i$ we denote by $X_i = (X_i^1, \ldots, X_i^p)$.

•
$$\Sigma = [\sigma_{|i-j|}]_{1 \leq i,j \leq p}.$$

• Σ belongs to the set of positive definite matrices S_p^{++} .

The information on the Toeplitz matrix is fully contained in the vector $(\sigma_0, \sigma_1, \ldots, \sigma_{p-1})$ of its diagonal values. An empirical estimator can be defined by

•
$$\forall j \in \{1, \dots, p-1\}, \ \hat{\sigma}_j = \operatorname{Tr}(A_j \Sigma_n)$$
 where

The information on the Toeplitz matrix is fully contained in the vector $(\sigma_0, \sigma_1, \ldots, \sigma_{p-1})$ of its diagonal values. An empirical estimator can be defined by

- $\forall j \in \{1, \dots, p-1\}, \ \hat{\sigma}_j = \operatorname{Tr}(A_j \Sigma_n)$ where
- $\forall (k, l) \in \{1, \dots, p\}^2$, $[A_j]_{k,l} = \frac{1}{2(p-j)} \mathbb{1}[\{|k-l|=j\}].$

 A_j has 0 entries except on the *j*th diagonal where it takes the value 1

The information on the Toeplitz matrix is fully contained in the vector $(\sigma_0, \sigma_1, \ldots, \sigma_{p-1})$ of its diagonal values. An empirical estimator can be defined by

•
$$\forall j \in \{1, \dots, p-1\}, \ \hat{\sigma}_j = \operatorname{Tr}(A_j \Sigma_n)$$
 where

•
$$\forall (k, l) \in \{1, \dots, p\}^2, \ [A_j]_{k,l} = \frac{1}{2(p-j)} \mathbb{1}[\{|k-l|=j\}].$$

 A_j has 0 entries except on the *j*th diagonal where it takes the value 1

•
$$\Sigma_n = \frac{1}{n} \sum_{k=1}^n X_k X_k^T$$
 is the empirical covariance matrix

• The random variable $\varphi_A(\Sigma_n - \Sigma)$ is centered and sub-exponential

- The random variable $\varphi_A(\Sigma_n \Sigma)$ is centered and sub-exponential
- With parameters $\left(\nu^2 = \frac{2||A\Sigma||_F^2}{n(1-K)}, b = \frac{2||A\Sigma||_{\infty}}{nK}\right)$, for some arbitrary K in]0, 1[.

- The random variable $\varphi_A(\Sigma_n \Sigma)$ is centered and sub-exponential
- With parameters $\left(\nu^2 = \frac{2||A\Sigma||_F^2}{n(1-K)}, b = \frac{2||A\Sigma||_{\infty}}{nK}\right)$, for some arbitrary K in]0, 1[.

• Consider
$$t_u = \max\left\{\sqrt{u}\frac{||A\Sigma||_F}{\sqrt{n(1-K)}}, u\frac{||A\Sigma||_{\infty}}{nK}\right\}$$
, then:

- The random variable $\varphi_A(\Sigma_n \Sigma)$ is centered and sub-exponential
- With parameters $\left(\nu^2 = \frac{2||A\Sigma||_F^2}{n(1-K)}, b = \frac{2||A\Sigma||_{\infty}}{nK}\right)$, for some arbitrary K in]0, 1[.

• Consider
$$t_u = \max\left\{\sqrt{u}\frac{||A\Sigma||_F}{\sqrt{n(1-K)}}, u\frac{||A\Sigma||_\infty}{nK}\right\}$$
, then:

$$\mathbb{P}[\varphi_A(\Sigma_n-\Sigma)\geq t_u]\leq \exp\left(-\frac{u}{4}\right),\quad u>0.$$

Nayel, Bettache (CREST)

 The objective is to test H₀: Σ = I_p against a set of one-sided or two-sided sparse alternatives.

- The objective is to test $H_0: \Sigma = I_p$ against a set of one-sided or two-sided sparse alternatives.
- In the time series setting this hypotheses testing allows to test whether a residual can be considered as a white noise or not.

- The objective is to test $H_0: \Sigma = I_p$ against a set of one-sided or two-sided sparse alternatives.
- In the time series setting this hypotheses testing allows to test whether a residual can be considered as a white noise or not.
- Recall that a test procedure Δ_n is a binary valued random variable $\Delta_n : (\mathbb{R}^p)^{\otimes n} \to \{0, 1\}.$

The test procedure needs to be very sensitive both to:

• Moderately sparse case: a relatively large number of very small but significant covariance values.

The test procedure needs to be very sensitive both to:

- Moderately sparse case: a relatively large number of very small but significant covariance values.
- Highly sparse case: a small number of significant covariance values.

• The test problem definition is

$$H_0: \Sigma = I_p, \quad \text{vs. } H_1: \Sigma \in \mathcal{F}_+(s, S, \sigma).$$

Nayel, Bettache (CREST)

• The test problem definition is

$$H_0: \Sigma = I_p, \text{ vs. } H_1: \Sigma \in \mathcal{F}_+(s, S, \sigma).$$

F₊(*s*, *S*, *σ*) is defined, for *σ* > 0 real number and *s* ≤ *S* integer numbers between 1 and *p* − 1, as the set of sparse Toeplitz covariance matrices Σ such that there are *s* significantly positive covariance elements with lags no larger than *S*. • The test problem definition is

$$H_0: \Sigma = I_p, \quad \text{vs. } H_1: \Sigma \in \mathcal{F}_+(s, S, \sigma).$$

F₊(s, S, σ) is defined, for σ > 0 real number and s ≤ S integer numbers between 1 and p − 1, as the set of sparse Toeplitz covariance matrices Σ such that there are s significantly positive covariance elements with lags no larger than S.

$$\mathcal{F}_+(s,S,\sigma) = \left\{ \Sigma \in \mathcal{S}_p^{++} \cap \mathcal{T}_p \text{ and there exists } \mathcal{C} \subseteq \{1,\ldots,S\}, \ |\mathcal{C}| = s, \ \forall j \in \{1,p-1\}, \ \begin{array}{c} \sigma_j \geq \sigma > 0, \\ \sigma_j = 0, \end{array} \right. \begin{array}{c} j \in \mathcal{C}, \\ j \notin \mathcal{C} \end{array} \right\}.$$

For testing over $\mathcal{F}_+(s, S, \sigma)$, consider for an arbitrary set $\mathcal{C} \subseteq \{1, \dots, S\}$,

$$Sum_{\mathcal{C}}(\Sigma_n) := \sum_{j \in \mathcal{C}} \operatorname{Tr}(A_j \Sigma_n) = \sum_{j \in \mathcal{C}} \hat{\sigma}_j.$$

For two-sided alternatives it is sufficient to consider $|\sigma_j|$ and $|\hat{\sigma}_j|$ instead of $\hat{\sigma}_j$ in the test statistics.

We consider for some threshold $t_{n,p}^{MS+}$ the test statistic

$$\Delta_n^{MS+} = I\left(Sum_{\{1:S\}}(\Sigma_n - I_p) \ge t_{n,p}^{MS+}\right). \tag{1}$$

Nayel, Bettache (CREST)

Stationary Time Series

13th May 2022 13 / 24

We consider now for some threshold $t_{n,p}^{HS+}$ the test statistic

$$\Delta_n^{HS+} = \max_{\mathcal{C} \subseteq \{1,\dots,S\}, \#\mathcal{C}=s} I\left(Sum_{\mathcal{C}}(\Sigma_n - I_p) \ge t_{n,p}^{HS+}\right).$$
(2)

The test Δ_n^{HS+} successively tries all possible sets C of s diagonals among the first S diagonal values. If any of these tests decides to reject H_0 , then Δ_n^{HS+} also rejects H_0 , otherwise Δ_n^{HS+} doesn't reject the null hypothesis H_0 .

The objective here is to properly select non-null correlation coefficients. The aim is to find a selector $\hat{\eta}$ with $\hat{\eta}_j = 1(|\hat{\sigma}_j| > \tau_n)$ that is consistent in the sense that the risk R^{LS} stays bounded where

$$R^{LS}(\widehat{\eta},\mathcal{F}) = \sum_{j=1}^{S} \mathbb{E}_{\Sigma}[|\widehat{\eta}_j - \eta_j|].$$

Real-valued time series

2 Supplementary slides

3 Vector-valued time series

Nayel, Bettache (CREST)

Stationary Time Series

13th May 2022 16 / 24

• It separates the set of possible outcomes of some random event in two contiguous sets, we decide to reject H_0 whenever $\Delta_n = 1$ and to accept H_0 whenever $\Delta_n = 0$.

- It separates the set of possible outcomes of some random event in two contiguous sets, we decide to reject H₀ whenever Δ_n = 1 and to accept H₀ whenever Δ_n = 0.
- The maximal testing risk is defined as

$$R(\Delta_n, \mathcal{F}_+) = \mathbb{P}_{I_p}(\Delta_n = 1) + \sup_{\Sigma \in \mathcal{F}_+} \mathbb{P}_{\Sigma}(\Delta_n = 0),$$

- It separates the set of possible outcomes of some random event in two contiguous sets, we decide to reject H_0 whenever $\Delta_n = 1$ and to accept H_0 whenever $\Delta_n = 0$.
- The maximal testing risk is defined as

$$R(\Delta_n, \mathcal{F}_+) = \mathbb{P}_{I_p}(\Delta_n = 1) + \sup_{\Sigma \in \mathcal{F}_+} \mathbb{P}_{\Sigma}(\Delta_n = 0),$$

 A separation rate is the least possible value for σ > 0 such that the maximal testing risk stays below some prescribed value.

Nayel, Bettache (CREST)

13th May 2022

17 / 24

Moderately sparse case

• When the alternative hypothesis is $\mathcal{F}_+(s, S, \sigma)$, we consider for some $t_{n,p}^{MS+}$ the test procedure

$$\Delta_n^{MS+} = I\left(\varphi_{A_{1:S}}(\Sigma_n - I_p) \ge t_{n,p}^{MS+}\right).$$

Moderately sparse case

• When the alternative hypothesis is $\mathcal{F}_+(s, S, \sigma)$, we consider for some $t_{n,p}^{MS+}$ the test procedure

$$\Delta_n^{MS+} = I\left(\varphi_{A_{1:S}}(\Sigma_n - I_p) \ge t_{n,p}^{MS+}\right).$$

• The test Δ_n^{MS+} , with

$$t_{n,p}^{MS+} = \max\left\{\sqrt{\frac{u \cdot S}{n(p-S)}}, \frac{2u \cdot S}{n(p-S)}\right\}$$

for u > 0 is such that

$$R(\Delta_n^{MS+},\mathcal{F}_+) \leq 2\exp\left(-\frac{u}{4}\right)$$

provided that $\sigma \geq \frac{2(s+1)}{s} t_{n,p}^{MS+}$.

Highly sparse case

• Let us consider now for some threshold $t_{n,p}^{HS+}$ the test procedure

$$\Delta_n^{HS+} = \max_{\mathsf{S}\subseteq\{1,\ldots,S\},\#\mathsf{S}=s} I\left(\varphi_{\mathcal{A}_\mathsf{S}}(\Sigma_n - I_p) \ge t_{n,p}^{HS+}\right).$$

• Let us consider now for some threshold $t_{n,p}^{HS+}$ the test procedure

$$\Delta_n^{HS+} = \max_{\mathsf{S}\subseteq\{1,\ldots,\mathsf{S}\},\#\mathsf{S}=\mathsf{s}} I\left(\varphi_{\mathcal{A}_\mathsf{S}}(\mathsf{\Sigma}_n-I_p) \ge t_{n,p}^{HS+}\right).$$

 The test Δ^{HS+}_n successively tries all possible sets S of s diagonals among the first S diagonal values. If any of these tests decides to reject H₀, then Δ^{HS+}_n also rejects H₀, otherwise Δ^{HS+}_n accepts the null hypothesis H₀.

• Let us consider now for some threshold $t_{n,p}^{HS+}$ the test procedure

$$\Delta_n^{HS+} = \max_{\mathsf{S} \subseteq \{1, \dots, S\}, \#\mathsf{S} = s} I\left(\varphi_{\mathcal{A}_\mathsf{S}}(\Sigma_n - I_p) \ge t_{n, p}^{HS+}\right).$$

 The test Δ^{HS+}_n successively tries all possible sets S of s diagonals among the first S diagonal values. If any of these tests decides to reject H₀, then Δ^{HS+}_n also rejects H₀, otherwise Δ^{HS+}_n accepts the null hypothesis H₀.

• The test
$$\Delta_n^{HS+}$$
, with $t_{n,p}^{HS+} = \max\left\{\sqrt{\frac{4u \cdot s \log\left(\frac{S}{s}\right)}{n(p-S)}}, \frac{8u \cdot s \log\left(\frac{S}{s}\right)}{n(p-S)}\right\}$ for

$$R(\Delta_n^{HS+}, \mathcal{F}^+) \le \exp\left(-(u-1)\log\binom{S}{s}\right) + \exp\left(-\frac{u}{4}\right) \text{ provided that}$$
$$\sigma \ge \frac{1}{s}\left(t_{n,p}^{HS+} + (2s+1)\max\left\{\sqrt{\frac{u\cdot s}{n(p-S)}}, \frac{2u\cdot s}{n(p-S)}\right\}\right)$$

• When the separation is measured by $\max_{C} \sum_{j \in C} \sigma_j$, its estimator is known as the scan statistic.

- When the separation is measured by $\max_{C} \sum_{j \in C} \sigma_j$, its estimator is known as the scan statistic.
- Note that the computations are not very involved.

- When the separation is measured by $\max_{C} \sum_{j \in C} \sigma_j$, its estimator is known as the scan statistic.
- Note that the computations are not very involved.
- After computing ξ₁ = φ_{A1}(Σ_n − I_p), ..., ξ_S = φ_{AS}(Σ_n − I_p), we sort these values in decreasing order : ξ₍₁₎ ≥ ξ₍₂₎ ≥ ... ≥ ξ_(S)

- When the separation is measured by $\max_{C} \sum_{j \in C} \sigma_j$, its estimator is known as the scan statistic.
- Note that the computations are not very involved.
- After computing ξ₁ = φ_{A1}(Σ_n − I_p), ..., ξ_S = φ_{AS}(Σ_n − I_p), we sort these values in decreasing order : ξ₍₁₎ ≥ ξ₍₂₎ ≥ ... ≥ ξ_(S)
- Then

$$\max_{\mathsf{C}\subseteq\{1,\ldots,S\},\#\mathsf{C}=s}\sum_{j\in\mathsf{C}}\varphi_{\mathcal{A}_j}(\Sigma_n-I_p)=\xi_{(1)}+\ldots+\xi_{(s)}$$

If
$$\Sigma$$
 belongs to $\mathcal{F}(s, S, \sigma)$, with $\sigma \ge 2\tau_n$, the selector $\hat{\eta}$ with
 $a = \left(\sqrt{\log(s)} + \sqrt{\log(S-s)}\right) \sqrt{u \frac{2s+1}{n(p-S)}}, \ b = 2u \log(s(S-s)) \frac{2s+1}{n(p-S)},$
 $\tau_n = \max\{a, b\}$

for u > 1 is such that

$$R_{LS}(\hat{\eta},\mathcal{F}) \leq 2\exp\left(-(u-1)rac{\log(s)}{4}
ight) + 2\exp\left(-(u-1)rac{\log(S-s)}{4}
ight).$$

Real-valued time series

2 Supplementary slides

3 Vector-valued time series

Nayel, Bettache (CREST)

 Consider X a generic d × p-dimensional matrix having a matrix normal distribution X ~ MN_{d×p}(0, Σ_L, Σ_R).

- Consider X a generic d × p-dimensional matrix having a matrix normal distribution X ~ MN_{d×p}(0, Σ_L, Σ_R).
- This is equivalent to saying that vec(X) has multivariate normal distribution N_{dp}(0, Σ_R ⊗ Σ_L).

- Consider X a generic d × p-dimensional matrix having a matrix normal distribution X ~ MN_{d×p}(0, Σ_L, Σ_R).
- This is equivalent to saying that vec(X) has multivariate normal distribution N_{dp}(0, Σ_R ⊗ Σ_L).
- Then we have a column covariance matrix $\mathbb{E}[XX^T] = \operatorname{Tr}(\Sigma_R)\Sigma_L$ and a row covariance matrix $\mathbb{E}[X^TX] = \operatorname{Tr}(\Sigma_L)\Sigma_R$.

We assume we observe repeatedly and independently *n* samples (X_1, \ldots, X_n) of the \mathbb{R}^d -valued time series of length *p*. The goal is to derive similar results as in the real-valued case.

