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Setup

Consider X a p−dimensional gaussian vector such that X ∼ Np(0,Σ).

We assume that X is issued from a stationary process.

Σ has a Toeplitz structure, meaning each descending diagonal from
left to right is constant.

The covariance matrix Σ has entries σi ,j = Cov(X i ,X j) = σ|i−j |.
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Observations

Observe repeatedly and independently n samples (X1, . . . ,Xn) of the
R-valued time series of length p.
We may consider n = 1
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Definitions

Consider X1, . . . ,Xn
i.i.d.∼ Np(0,Σ).

∀i we denote by Xi = (X 1
i , . . . ,X

p
i ).

Σ = [σ|i−j |]1≤i ,j≤p.

Σ belongs to the set of positive definite matrices S++
p .
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Toeplitz structure

The information on the Toeplitz matrix is fully contained in the vector
(σ0, σ1, . . . , σp−1) of its diagonal values. An empirical estimator can be
defined by

∀j ∈ {1, . . . , p − 1}, σ̂j = Tr(AjΣn) where

∀(k , l) ∈ {1, . . . , p}2, [Aj ]k,l = 1
2(p−j) 1[{|k − l | = j}].

Aj has 0 entries except on the jth diagonal where it takes the value 1

Σn =
1

n

n∑
k=1

XkX
T
k is the empirical covariance matrix
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Concentration inequality

Consider φA : Σ 7→ Tr(AΣ) for A ∈ Sp and Σ ∈Mp(R).

The random variable ϕA(Σn − Σ) is centered and sub-exponential

With parameters
(
ν2 =

2||AΣ||2F
n(1−K) , b = 2||AΣ||∞

nK

)
, for some arbitrary K

in ]0, 1[.

Consider tu = max

{√
u ||AΣ||F√

n(1−K)
, u ||AΣ||∞

nK

}
, then:

P[ϕA (Σn − Σ) ≥ tu] ≤ exp
(
−u

4

)
, u > 0.
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Non parametric testing

The objective is to test H0 : Σ = Ip against a set of one-sided or
two-sided sparse alternatives.

In the time series setting this hypotheses testing allows to test
whether a residual can be considered as a white noise or not.

Recall that a test procedure ∆n is a binary valued random variable
∆n : (Rp)⊗n → {0, 1}.
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Two cases

The test procedure needs to be very sensitive both to:

Moderately sparse case: a relatively large number of very small but
significant covariance values.

Highly sparse case: a small number of significant covariance values.
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Test problem

The test problem definition is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s,S , σ).

F+(s,S , σ) is defined, for σ > 0 real number and s ≤ S integer
numbers between 1 and p − 1, as the set of sparse Toeplitz
covariance matrices Σ such that there are s significantly positive
covariance elements with lags no larger than S .
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Test procedure

For testing over F+(s, S , σ), consider for an arbitrary set C ⊆ {1, . . . ,S},

SumC(Σn) :=
∑
j∈C

Tr(AjΣn) =
∑
j∈C

σ̂j .

For two-sided alternatives it is sufficient to consider |σj | and |σ̂j | instead of
σ̂j in the test statistics.
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Moderately sparse case

We consider for some threshold tMS+
n,p the test statistic

∆MS+
n = I

(
Sum{1:S}(Σn − Ip) ≥ tMS+

n,p

)
. (1)
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Highly sparse case

We consider now for some threshold tHS+
n,p the test statistic

∆HS+
n = max

C⊆{1,...,S},#C=s
I
(
SumC(Σn − Ip) ≥ tHS+

n,p

)
. (2)

The test ∆HS+
n successively tries all possible sets C of s diagonals among

the first S diagonal values. If any of these tests decides to reject H0, then
∆HS+

n also rejects H0, otherwise ∆HS+
n doesn’t reject the null hypothesis

H0.
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Lag selection setup

The objective here is to properly select non-null correlation coefficients.
The aim is to find a selector η̂ with η̂j = 1(|σ̂j | > τn) that is consistent in
the sense that the risk RLS stays bounded where

RLS(η̂,F) =
S∑

j=1

EΣ[|η̂j − ηj |].
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Non parametric testing

It separates the set of possible outcomes of some random event in
two contiguous sets, we decide to reject H0 whenever ∆n = 1 and to
accept H0 whenever ∆n = 0.

The maximal testing risk is defined as

R(∆n,F+) = PIp(∆n = 1) + sup
Σ∈F+

PΣ(∆n = 0),

A separation rate is the least possible value for σ > 0 such that the
maximal testing risk stays below some prescribed value.
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Moderately sparse case

When the alternative hypothesis is F+(s, S , σ), we consider for some
tMS+
n,p the test procedure

∆MS+
n = I

(
ϕA1:S

(Σn − Ip) ≥ tMS+
n,p

)
.

The test ∆MS+
n , with

tMS+
n,p = max

{√
u · S

n(p − S)
,

2u · S
n(p − S)

}

for u > 0 is such that

R(∆MS+
n ,F+) ≤ 2 exp

(
−u

4

)
provided that σ ≥ 2(s+1)

s tMS+
n,p .
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Highly sparse case

Let us consider now for some threshold tHS+
n,p the test procedure

∆HS+
n = max

S⊆{1,...,S},#S=s
I
(
ϕAS

(Σn − Ip) ≥ tHS+
n,p

)
.

The test ∆HS+
n successively tries all possible sets S of s diagonals

among the first S diagonal values. If any of these tests decides to
reject H0, then ∆HS+

n also rejects H0, otherwise ∆HS+
n accepts the

null hypothesis H0.

The test ∆HS+
n , with tHS+

n,p = max

{√
4u·s log (Ss)
n(p−S) ,

8u·s log (Ss)
n(p−S)

}
for

u > 1 is such that
R(∆HS+

n ,F+) ≤ exp
(
−(u − 1) log

(S
s

))
+ exp

(
−u

4

)
provided that

σ ≥ 1
s

(
tHS+
n,p + (2s + 1) max

{√
u·s

n(p−S) ,
2u·s

n(p−S)

})
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Highly sparse case - computation remark

When the separation is measured by maxC
∑

j∈C σj , its estimator is
known as the scan statistic.

Note that the computations are not very involved.

After computing ξ1 = ϕA1(Σn − Ip), ..., ξS = ϕAS
(Σn − Ip), we sort

these values in decreasing order : ξ(1) ≥ ξ(2) ≥ ... ≥ ξ(S)

Then
max

C⊆{1,...,S},#C=s

∑
j∈C

ϕAj
(Σn − Ip) = ξ(1) + ...+ ξ(s)
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Lag selection theorem

If Σ belongs to F(s, S , σ), with σ ≥ 2τn, the selector η̂ with

a =
(√

log(s) +
√

log(S − s)
)√

u 2s+1
n(p−S) , b = 2u log(s(S − s)) 2s+1

n(p−S) ,

τn = max {a, b}

for u > 1 is such that

RLS(η̂,F) ≤ 2 exp

(
−(u − 1)

log(s)

4

)
+ 2 exp

(
−(u − 1)

log(S − s)

4

)
.
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Vector-valued time series

Consider X a generic d × p−dimensional matrix having a matrix
normal distribution X ∼MN d×p(0,ΣL,ΣR).

This is equivalent to saying that vec(X ) has multivariate normal
distribution Ndp(0,ΣR ⊗ ΣL).

Then we have a column covariance matrix E[XXT ] = Tr(ΣR)ΣL and
a row covariance matrix E[XTX ] = Tr(ΣL)ΣR .
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Vector-valued time series

We assume we observe repeatedly and independently n samples
(X1, . . . ,Xn) of the Rd -valued time series of length p.
The goal is to derive similar results as in the real-valued case.
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