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Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y11 · · · Y1j · · · Y1p
...

...
...

Yi1 · · · Yij · · · Yip
...

...
...

Yn1 · · · Ynj · · · Ynp

 =


X11 · · · X1q
...

...
Xi1 · · · Xiq
...

...
Xn1 · · · Xnq

 ·


B∗
11 · · · B∗

1j · · · B∗
1p

...
...

...
...

...
...

B∗
q1 · · · B∗

qj · · · B∗
qp

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y11 · · · Y1j · · · Y1p
...

...
...

Yi1 · · · Yij · · · Yip
...

...
...

Yn1 · · · Ynj · · · Ynp

 =


X11 · · · X1q
...

...
Xi1 · · · Xiq
...

...
Xn1 · · · Xnq

 ·


B∗
11 · · · B∗

1j · · · B∗
1p

...
...

...
...

...
...

B∗
q1 · · · B∗

qj · · · B∗
qp

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y11 · · · Y1j · · · Y1p
...

...
...

Yi1 · · · Yij · · · Yip
...

...
...

Yn1 · · · Ynj · · · Ynp

 =


X11 · · · X1q
...

...
Xi1 · · · Xiq
...

...
Xn1 · · · Xnq

 ·


B∗
11 · · · B∗

1j · · · B∗
1p

...
...

...
...

...
...

B∗
q1 · · · B∗

qj · · · B∗
qp

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y11 · · · Y1j · · · Y1p
...

...
...

Yi1 · · · Yij · · · Yip
...

...
...

Yn1 · · · Ynj · · · Ynp

 =


X11 · · · X1q
...

...
Xi1 · · · Xiq
...

...
Xn1 · · · Xnq

 ·


B∗
11 · · · B∗

1j · · · B∗
1p

...
...

...
...

...
...

B∗
q1 · · · B∗

qj · · · B∗
qp

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y11 · · · Y1j · · · Y1p
...

...
...

Yi1 · · · Yij · · · Yip
...

...
...

Yn1 · · · Ynj · · · Ynp

 =


X11 · · · X1q
...

...
Xi1 · · · Xiq
...

...
Xn1 · · · Xnq

 ·


B∗
11 · · · B∗

1j · · · B∗
1p

...
...

...
...

...
...

B∗
q1 · · · B∗

qj · · · B∗
qp

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y1j
...
Yij
...

Ynj

 =


X11 · · · X1k · · · X1q
...

...
...

Xi1 · · · Xik · · · Xiq
...

...
...

Xn1 · · · Xnk · · · Xnq

 ·



B∗
1j
...

B∗
kj
...

B∗
qj

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.
Y1j
...
Yij
...

Ynj

 = B∗
1j ·


X11
...

Xi1
...

Xn1

+ · · ·+B∗
kj ·


X1k
...

Xik
...

Xnk

+ · · ·+B∗
qj ·


X1q
...

Xiq
...

Xnq

+ E

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.

∀j ∈ [p], Yj =

q∑
i=1

B∗
ijXi

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Multivariate Linear Regression

Collect (y1, . . . , yn) and (x1, . . . , xn) with yi ∈ Rp and xi ∈ Rq.

Form Y ∈ Rn×p and X ∈ Rn×q.

Assume ∃B∗ ∈ Rq×p s.t Y = XB∗ + E where E is a noise matrix.

∀j ∈ [p], Yj =

q∑
i=1

B∗
ijXi

The columns of Y can be well explained by linear combinations of the
columns of X .

Nayel, Bettache (CREST) Two-sided Matrix Regression 4 / 31



Low-rank structure on B∗.

Without any constraint on the structure of B∗ (full rank), this is
equivalent to performing p independent linear regressions.

The j th column of Y only depends on the j th column of B∗.

It ignores the multivariate nature of the response !

The columns of Y may be (heavily) correlated and the Least Squares
estimator will not consider these correlations.

Solution: impose a low-rank structure on B∗.

This is studied in the literature.
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How Y depends on the signal XB∗ ?

The j th column of Y only depends on the j th column of B∗.

The i th row of Y only depends on the i th row of X .

If the columns of Y are correlated, we can impose a low rank
structure on B∗.

What if the rows of Y are correlated ?

The design matrix X is fixed so we cannot impose anything on its
structure.
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What if the rows of Y are correlated ?
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Example

Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X ?

Economic data store economic indicators as column features and
countries as rows.

It can be explained by a smaller matrix containing a smaller number
of countries (geographical or economic representatives) and a few
economic features (one representative for each category).

Other cases: meteorological data, medical or pharmaceutical data and
so on.
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Two-Sided Matrix Regression

Observe the matrix Y ∈ Rn×p and a design matrix X ∈ Rm×q.

They are related via the 2MR model

Y = A∗XB∗ + E .

Two parameter matrices A∗ ∈ Rn×m and B∗ ∈ Rq×p:

The noise matrix E is assumed to have independent centered
σ−sub-Gaussian entries.

Objective: Retrieve the signal A∗XB∗.

△! : The problem is not convex anymore !
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If n = m and A∗ is known to be the identity, the 2MR model becomes
the (one-sided) matrix regression (MR) model Y = XB∗ + E .

If m = q and X is the identity matrix, the 2MR model becomes a
rankm factorisation model of the signal M∗ = A∗B∗ observed with
noise.

Unifies Low-rank Matrix Regression and Low-Rank Matrix Factorization
under a same framework.
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Objective

If we know r = rankA∗XB∗ we can exploit it.

Let’s fix r ∈ [n ∧ p ∧ rX ] where rX = rankX .

Let us build explicit predictors (Âr , B̂r ) solutions to the non-convex
constrained minimization problem:

Note: rankA∗XB∗ ≤ min(rankA∗, rankX , rankB∗).

Intuition: There is lost information in the product and we can only
hope to recover predictors Â and B̂ with respective ranks no more
than r .

Global idea: Y −→ Yr −→ ÂX B̂.
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Nayel, Bettache (CREST) Two-sided Matrix Regression 12 / 31



Objective

Let’s fix r ∈ [n ∧ p ∧ rX ] where rX = rankX .
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Nayel, Bettache (CREST) Two-sided Matrix Regression 12 / 31



Rewriting of the model

The Frobenius norm is unitarily invariant and the SVD brings out unitary
matrices.

The model can be re-written using the SVD of Y and X as follows:
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Rewriting of the model

The model can be re-written using the SVD of Y and X as follows:
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Rewriting of the model
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This leads, for any matrices A,B, to:

∥Y − AXB∥2F = ∥ΣY − A0ΣXB0∥2F ,

where A0 = U⊤
Y AUX and B0 = V⊤

X BVY .

A and A0 have the same rank, idem for B and B0!
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Rewriting of the model

The model can be re-written using the SVD of Y and X as follows:

Y = A∗XB∗ + E

ΣY = A∗
0ΣXB

∗
0 + E0

This leads, for any matrices A,B, to:

∥Y − AXB∥2F = ∥ΣY − A0ΣXB0∥2F ,

where A0 = U⊤
Y AUX and B0 = V⊤

X BVY .

The initial problem is equivalent to

min
A0,B0:

rankA0∧rankB0≤r

∥ΣY − A0ΣXB0∥2F .
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Solution of the re-written problem

We wish to solve

min
A0,B0:

rankA0∧rankB0≤r

∥ΣY − A0ΣXB0∥2F .

(Â0r , B̂0r ) belongs to the set of solutions of the re-written problem.

We want to know how far the predictor Â0rΣX B̂0r is to the signal
A∗
0ΣXB

∗
0 .
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
σ1(Y )

. . .

σrY (Y )
0


︸ ︷︷ ︸

n×p

−A0


σ1(X )

. . .

σrX (X )
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
︸ ︷︷ ︸

m×q

B0
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2
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Solution of the re-written problem

We wish to solve

min
A0,B0:

rankA0∧rankB0≤r

∥ΣY − A0ΣXB0∥2F .

A natural choice is

Â0r =


σ1(Y )

. . .

σr∧rY (Y )
0


︸ ︷︷ ︸

n×m

= Diagn,m(σk(Y ), k ≤ r ∧ rY )

B̂0r =


σ1(X )−1

. . .

σr (X )−1

0


︸ ︷︷ ︸

q×p

= Diagq,p(σk(X )−1, k ≤ r)
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Oracle inequality in the fixed rank case

The predictor Â0rΣX B̂0r satisfies for C > 0 and for any t > 0:

The value inf
A0,B0:

rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 − A0ΣXB0∥2F is know:

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix
regression (MR) model.

Nayel, Bettache (CREST) Two-sided Matrix Regression 15 / 31



Oracle inequality in the fixed rank case
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Solution of the initial problem

From the explicit solutions (Â0r , B̂0r ) we deduce (Âr , B̂r ) solution to
the initial problem:

Âr = UY Â0rU
⊤
X ,

B̂r = VX B̂0rV
⊤
Y .

They share the same ranks !

The predictor ÂrXB̂r satisfies for C > 0 and for any t > 0:
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B̂r = VX B̂0rV
⊤
Y .

They share the same ranks !

The predictor ÂrXB̂r satisfies for C > 0 and for any t > 0:

∥A∗XB∗ − ÂrXB̂r∥2F ≤ 9 inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ − AXB∥2F

+ 24Cσ2(1 + t)2 · r(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).
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Alternative predictors

There is an identifiability issue and the predictors are not uniquely
defined in this setting.

Consider (αÂ0r ,
1

α
B̂0r ) with arbitrary α > 0.

Let λi for all i ≤ m ∧ q be arbitrary positive numbers, then

(Â0rDiagm,m(λ1, . . . , λm∧q),Diagq,q(λ
−1
1 , . . . , λ−1

m∧q)B̂0r )

Without further strong assumptions, we can only hope to learn the
global signal, and not the parameters of the model.
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1

α
B̂0r ) with arbitrary α > 0.

Let λi for all i ≤ m ∧ q be arbitrary positive numbers, then
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(Â0rDiagm,m(λ1, . . . , λm∧q),Diagq,q(λ
−1
1 , . . . , λ−1

m∧q)B̂0r )

Without further strong assumptions, we can only hope to learn the
global signal, and not the parameters of the model.

Nayel, Bettache (CREST) Two-sided Matrix Regression 17 / 31



Table of Contents

1 Introduction

2 Framework

3 Prediction for given ranks

4 Rank-adaptive prediction

5 Data-driven rank-adaptive prediction

6 Numerical simulations and conclusion

7 Supplementary slides

Nayel, Bettache (CREST) Two-sided Matrix Regression 18 / 31



Rank-adaptive procedure

How to derive a rank-adaptive procedure ?

For λ ≥ C1(1 + t)2σ2(n + p) with C1 > 0, t > 0, consider

r̂ := arg min
r∈[n∧p∧rX ]

{
∥Y − ÂrXB̂r∥2F + λr

}
.
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For λ ≥ C1(1 + t)2σ2(n + p) with C1 > 0, t > 0, consider

r̂ := arg min
r∈[n∧p∧rX ]

{
∥Y − ÂrXB̂r∥2F + λr

}
.

Then,

∥A∗XB∗−Âr̂XB̂r̂∥2F ≤ min
r∈[n∧p∧rX ]

{
9

r∗∑
k=r+1

σk(A
∗XB∗)2 · 1r<r∗ + 6λr

}
,

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?

If for some constant c in (0,1), σr∗(A
∗XB∗)2 > (1 + c)2λ, then

P(r̂ = r∗) ≥ P(∥E∥2op ≤ c2λ).
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P(r̂ = r∗) ≥ P(∥E∥2op ≤ c2λ).

In particular, if λ ≥ 2C (n + p)σ2(1 + t)2/c2 for some absolute
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The rank selector requires λ to be lower bounded by a function of σ2.
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∗XB∗)2 > (1 + c)2λ, then

P(r̂ = r∗) ≥ P(∥E∥2op ≤ c2λ).

The rank selector requires λ to be lower bounded by a function of σ2.
What if we don’t have access to σ2 ?
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Unknown σ case

In previous situations, λ needed to be lower bounded by a function of
σ2.

What can we do if σ is unknown ?

Consider the following σ2 estimator

σ̂2
r =

1

np
∥Y − ÂrXB̂r∥2F .

Consider the data-driven rank-adaptive procedure

r̄ := arg min
r∈[rmax ]

{
∥Y − ÂrXB̂r∥2F + λ · r σ̂2

r

}
.

If rmax ≥ r∗ and λ = 2np/(rmax ∨ rY ), then for any t > 0:

∥A∗XB∗ − Âr̄XB̂r̄∥2F ≤ C2(1 + t)2 · σ2rmax(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).

Similar as in the known σ case !
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∥Y − ÂrXB̂r∥2F .

Consider the data-driven rank-adaptive procedure

r̄ := arg min
r∈[rmax ]

{
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∥Y − ÂrXB̂r∥2F .

Consider the data-driven rank-adaptive procedure

r̄ := arg min
r∈[rmax ]

{
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Numerical simulations

How to numerically choose λ ?

We derive explicit and fast to calculate procedures !

Great numerical performances in various settings.
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What’s next ?

What if we observe a collection of matrices (Yi ,Xi ) ?

What if we model a matrix autoregressive process with the 2MR
model Yt+1 = A∗YtB

∗ + Et ?

What if we impose other sparsity assumptions on A∗ and B∗ ?

Nayel, Bettache (CREST) Two-sided Matrix Regression 25 / 31



What’s next ?

What if we observe a collection of matrices (Yi ,Xi ) ?

What if we model a matrix autoregressive process with the 2MR
model Yt+1 = A∗YtB

∗ + Et ?

What if we impose other sparsity assumptions on A∗ and B∗ ?

Nayel, Bettache (CREST) Two-sided Matrix Regression 25 / 31



What’s next ?

What if we observe a collection of matrices (Yi ,Xi ) ?

What if we model a matrix autoregressive process with the 2MR
model Yt+1 = A∗YtB

∗ + Et ?

What if we impose other sparsity assumptions on A∗ and B∗ ?

Nayel, Bettache (CREST) Two-sided Matrix Regression 25 / 31



END

Thanks for listening !
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?

Consider the λ-rank of a matrix M, rM(λ), as the number of singular
values above

√
λ.
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Can we retrieve the true rank of the signal with high probability ?

Consider the λ-rank of a matrix M, rM(λ), as the number of singular
values above

√
λ.

rM(λ) = 1 ∨
rankM∑
k=1

1σk (M)2≥λ.

It performs a hard thresholding of the singular values !
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rM(λ) = 1 ∨
rankM∑
k=1

1σk (M)2≥λ.

If λ > σrY (Y )2, there is a unique solution r̂ and it is actually the
λ−rank of Y , i.e. r̂ = rY (λ).
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?

Consider the λ-rank of a matrix M, rM(λ), as the number of singular
values above

√
λ.

rM(λ) = 1 ∨
rankM∑
k=1

1σk (M)2≥λ.

If the λ-rank of the signal A∗XB∗ is well separated, the procedure
retrieves it with high probability.
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?

Consider the λ-rank of a matrix M, rM(λ), as the number of singular
values above

√
λ.

If for some constant c in (0,1), σr∗(λ)(A
∗XB∗)2 > (1 + c)2λ and

σr∗(λ)+1(A
∗XB∗)2 < (1− c)2λ, then

P(r̂ = r∗(λ)) ≥ P(∥E∥2op ≤ c2λ).
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P(r̂ = r∗(λ)) ≥ P(∥E∥2op ≤ c2λ).

r∗(λ) coincides with the true underlying rank r∗ is equivalent to
having σr∗(A

∗XB∗)2 ≥ λ > 0.
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∗XB∗)2 < (1− c)2λ, then

P(r̂ = r∗(λ)) ≥ P(∥E∥2op ≤ c2λ).

r∗(λ) coincides with the true underlying rank r∗ is equivalent to
having σr∗(A

∗XB∗)2 ≥ λ > 0.

It is necessary that a signal-to-noise ratio, given here by
σr∗(A

∗XB∗)2/σ1(E )
2 be significant in order to have the true

underlying rank r∗ selected by r̂ .
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Consistent rank selection

Can we retrieve the true rank of the signal with high probability ?

Consider the λ-rank of a matrix M, rM(λ), as the number of singular
values above

√
λ.

If for some constant c in (0,1), σr∗(A
∗XB∗)2 > (1 + c)2λ, then

P(r̂ = r∗) ≥ P(∥E∥2op ≤ c2λ).

The rank selector requires λ to be lower bounded by a function of σ2.
What if we don’t have access to σ2 ?
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Simulation context

Consider n = 100 and p = 300 with Y ∈ Rn×p together with m = 50
and q = 60 with X ∈ Rm×q.

We randomly generate three matrices: A∗, B∗, and X , with
independent random gaussian entries with mean 0 and variance 1.

These matrices are then projected onto the best low-rank matrix
approximation, with the matrix A∗ having a rank r∗A = 16, the matrix
B∗ having a rank r∗B = 12, and the matrix X having a rank rX = 25.

The signal matrix is defined as A∗XB∗ and shows a rank of 12 in all
experiments.

We define various settings for the variance σ2 of the Gaussian noise E
so that the signal-to-noise ratio SNR := σr∗(A

∗XB∗)2/σ1(E )
2 varies

approximately in the range [0.5, 2].
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Predictor performances

Figure: Evolution of the risk
∥ÂrXB̂r − A∗XB∗∥2F

∥A∗XB∗∥2F
in function of r for different

values of σ.

Nayel, Bettache (CREST) Two-sided Matrix Regression 30 / 31



Rank recovering

Figure: Evolution of the estimated r̂ as a function of log(λ) for different values of
σ.
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