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Multivariate Linear Regression

e Collect (yi,...,yn) and (x1,...,xn) with y; € RP and x; € R9.
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Multivariate Linear Regression

o Collect (yi,...,yn) and (x1,...,xp) with y; € RP and x; € R9.
@ Form Y € R"™P and X € R"™9,
@ Assume dB* ¢ R9*P st Y = XB* + E where E is a noise matrix.
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Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9%P st Y = XB* + E where E is a noise matrix.

Yiu - Yy o Yip
RV

Yn1 Y:nj Yop

X.11 Xllq By, --- By -+ B,

X o xg) \Ba By By

Nayel, Bettache (CREST) Two-sided Matrix Regression



Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9%P st Y = XB* + E where E is a noise matrix.

Yiu - Yy o Yip
MRV

Yn1 Y:,U- Yop

X.11 Xllq By, --- By -+ B,

X o xg) \Ba By By

Nayel, Bettache (CREST) Two-sided Matrix Regression



Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9%P st Y = XB* + E where E is a noise matrix.

Yiu - Yy o Yip
MRV

Yn1 Y:nj Yop

X.11 Xllq By, --- By -+ B,

X o xg) \Ba By By

Nayel, Bettache (CREST) Two-sided Matrix Regression



Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9%P st Y = XB* + E where E is a noise matrix.

Yiu - Yy o Yip
VR

Yn1 Y:nj Yop

X.11 Xllq By, --- By -+ B,

X o xg) \Ba By By

Nayel, Bettache (CREST) Two-sided Matrix Regression



Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9%P st Y = XB* + E where E is a noise matrix.

Yii oo Yy oo Yip
Yo - Yy oo Y| =

Ynl Ynj Y"P

X1 -+ X . . .

.11 .1q By - Blj . Blp
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Multivariate Linear Regression

e Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € RY.
@ Form Y € R"™P and X € R"*9,

@ Assume IB* € RI*P

st Y = XB* 4+ E where E is a noise matrix
Yy Xu - X - Xig By;
’/’J - Xil X/k Xiq : Bkj +E
YnJ an Xnk an B:;J
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Multivariate Linear Regression

e Collect (yi1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R"P and X € R"™9,

@ Assume 3B* ¢ R9*P st Y = XB* + E where E is a noise matrix.
Yy X1 X1k Xig

Yij :ij'

Xi1 ++Bkj Xik +"'+B;j' Xiq + E

Ynj an Xnk X”q
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Multivariate Linear Regression

o Collect (yi,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
@ Form Y € R™P and X € R"*49,
@ Assume dB* ¢ R9*P st Y = XB* + E where E is a noise matrix.

el V=) BX
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Multivariate Linear Regression

Collect (y1,...,yn) and (x1,...,x,) with y; € RP and x; € R9.
Form Y € R"P and X € R™4,
Assume dB* € R9%P st Y = XB* + E where E is a noise matrix.

el Yi=) BjXi

q
i=1

@ The columns of Y can be well explained by linear combinations of the
columns of X.
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.
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e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.

@ The j column of Y only depends on the j column of B*.
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.
@ The j* column of Y only depends on the j column of B*.

Yiu - Yy oo Yip
Yin YU Yio | =

Yn1 Y:nj Ynp
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Xil Xiq : + E
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.

@ The jt column of Y only depends on the j* column of B*.

@ |t ignores the multivariate nature of the response !
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.

@ The jt column of Y only depends on the j* column of B*.
@ It ignores the multivariate nature of the response !

@ The columns of Y may be (heavily) correlated and the Least Squares
estimator will not consider these correlations.
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.

The jt column of Y only depends on the j column of B*.

It ignores the multivariate nature of the response !

@ The columns of Y may be (heavily) correlated and the Least Squares
estimator will not consider these correlations.

Solution: impose a low-rank structure on B*.
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Low-rank structure on B*.

e Without any constraint on the structure of B* (full rank), this is
equivalent to performing p independent linear regressions.

@ The jt column of Y only depends on the j* column of B*.
@ It ignores the multivariate nature of the response !

@ The columns of Y may be (heavily) correlated and the Least Squares
estimator will not consider these correlations.

@ Solution: impose a low-rank structure on B*.

@ This is studied in the literature.
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How Y depends on the signal XB* 7

@ The j column of Y only depends on the j column of B*.
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j column of B*.
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j* column of B*.

@ The it row of Y only depends on the it row of X.
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j column of B*.
e The i row of Y only depends on the i*" row of X.

Yio oo Yy oo Yip
Yi YU Yio | =

Yn1 Y:nj Ynp

Xuoon Xe\ gy ooy o B,
S
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j* column of B*.
@ The it" row of Y only depends on the it" row of X.

@ If the columns of Y are correlated, we can impose a low rank
structure on B*.
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j* column of B*.
@ The it" row of Y only depends on the it" row of X.

@ If the columns of Y are correlated, we can impose a low rank
structure on B*.

@ What if the rows of Y are correlated ?
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How Y depends on the signal XB* 7

@ The j* column of Y only depends on the j* column of B*.
@ The it" row of Y only depends on the it" row of X.

@ If the columns of Y are correlated, we can impose a low rank
structure on B*.

@ What if the rows of Y are correlated ?

@ The design matrix X is fixed so we cannot impose anything on its
structure.
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Example

@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X ?
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Example

@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X 7

@ Economic data store economic indicators as column features and
countries as rows.

Nayel, Bettache (CREST) Two-sided Matrix Regression



Example

@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X 7

@ Economic data store economic indicators as column features and
countries as rows.

Indicatory --- Indicatory
Country;
Y=
Country,
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Example

@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X 7

@ Economic data store economic indicators as column features and
countries as rows.

@ |t can be explained by a smaller matrix containing a smaller number
of countries (geographical or economic representatives) and a few
economic features (one representative for each category).
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@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X ?

@ Economic data store economic indicators as column features and
countries as rows.

@ It can be explained by a smaller matrix containing a smaller number
of countries (geographical or economic representatives) and a few
economic features (one representative for each category).

°

GPD UR CPI IR GD CR

USA
CAN
JPN
X = CHN
IND
FRA
GER
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Example

@ Do we have examples where we want to regress a matrix Y with
correlated rows and columns on a fixed design matrix X 7

@ Economic data store economic indicators as column features and
countries as rows.

@ It can be explained by a smaller matrix containing a smaller number
of countries (geographical or economic representatives) and a few
economic features (one representative for each category).

@ Other cases: meteorological data, medical or pharmaceutical data and
so on.
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Two-Sided Matrix Regression

@ Observe the matrix Y € R™P and a design matrix X € R™*9,

Nayel, Bettache (CREST) Two-sided Matrix Regression
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@ Observe the matrix Y € R™P and a design matrix X € R™*9,
@ They are related via the 2MR model

Y = A*XB* + E.
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Two-Sided Matrix Regression

@ Observe the matrix Y € R™P and a design matrix X € R™*9,
@ They are related via the 2MR model

Y = A*XB* + E.

@ Two parameter matrices A* € R"*™ and B* € R9*P: low-rank.
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Two-Sided Matrix Regression

Observe the matrix Y € R"*P and a design matrix X € R™*9.
They are related via the 2MR model

Y = A*XB* + E.

Two parameter matrices A* € R™™ and B* € R9*P: |low-rank.

@ The noise matrix E is assumed to have independent centered
o—sub-Gaussian entries.
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Two-Sided Matrix Regression

Observe the matrix Y € R"*P and a design matrix X € R™*9.
They are related via the 2MR model

Y = A*XB* + E.

Two parameter matrices A* € R™™ and B* € R9*P: |low-rank.

The noise matrix E is assumed to have independent centered
o —sub-Gaussian entries.

@ Objective: Retrieve the signal A*XB*.
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Two-Sided Matrix Regression

Observe the matrix Y € R"*P and a design matrix X € R™*9.
They are related via the 2MR model

Y = A*XB* + E.

Two parameter matrices A* € R™™ and B* € R9*P: |low-rank.

The noise matrix E is assumed to have independent centered
o —sub-Gaussian entries.

Objective: Retrieve the signal A*XB*.

A\: The problem is not convex anymore !
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Related models

Y e R™P and X cR™9,
Y = A*XB* + E.

The 2MR model encompasses known models:
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Related models

Y e R™P and X e R™9,
Y = A*XB* + E.

The 2MR model encompasses known models:

@ If n=m and A" is the identity, the 2MR model becomes the
(one-sided) matrix regression (MR) model Y = XB* + E.
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Related models

Y e R™P and X e R™9,
Y =A*"XB*+E.

The 2MR model encompasses known models:
o If n= m and A* is known to be the identity, the 2MR model becomes
the (one-sided) matrix regression (MR) model Y = XB* + E.
@ If m = g and X is the identity matrix, the 2MR model becomes a
rank m factorisation model of the signal M* = A*B* observed with
noise.
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Related models

Y e R™P and X e R™X9,
Y =A*XB* + E.

The 2MR model encompasses known models:
@ If n= m and A* is known to be the identity, the 2MR model becomes
the (one-sided) matrix regression (MR) model Y = XB* + E.

o If m= g and X is the identity matrix, the 2MR model becomes a
rank m factorisation model of the signal M* = A*B* observed with
noise.

Unifies Low-rank Matrix Regression and Low-Rank Matrix Factorization
under a same framework.
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Objective

If we know r = rank A*XB* we can exploit it.
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@ Let's fix r € [n A p A rx] where rx = rank X.
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o Let's fix r € [n A p A rx] where rx = rank X.

@ Let us build explicit predictors (Ar, B,) solutions to the non-convex
constrained minimization problem:
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o Let's fix r € [n A p A rx] where rx = rank X.

o Let us build explicit predictors (A,, é,) solutions to the non-convex
constrained minimization problem:

. o 2
min  [|Y — AXB|[z.

rank A/\Laﬁk B<r
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o Let's fix r € [n A p A rx] where rx = rank X.

o Let us build explicit predictors (A,, é,) solutions to the non-convex
constrained minimization problem:

. . 2
min  [|Y — AXB|[z.

rank A/\7rar;k B<r

e Note: rank A*XB* < min(rank A* rank X, rank B*).
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o Let's fix r € [n A p A rx] where rx = rank X.

o Let us build explicit predictors (A,, é,) solutions to the non-convex
constrained minimization problem:

min  ||Y — AXB|%.
A,B:
rank AArank B<r

o Note: rank A*XB* < min(rank A*, rank X, rank B*).

@ Intuition: There is lost information in the product and we can only
hope to recover predictors A and B with respective ranks no more
than r.
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o Let's fix r € [n A p A rx] where rx = rank X.

o Let us build explicit predictors (A,, é,) solutions to the non-convex
constrained minimization problem:

. . 2
min  [|Y — AXB|[z.

rank A/\7rar;k B<r

o Note: rank A*XB* < min(rank A*, rank X, rank B*).

@ Intuition: There is lost information in the product and we can only
hope to recover predictors A and B with respective ranks no more
than r.

@ Global idea: Y — Y, — AXB.

Nayel, Bettache (CREST) Two-sided Matrix Regression 12 /31



Rewriting of the model

The Frobenius norm is unitarily invariant and the SVD brings out unitary
matrices.
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:
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@ The model can be re-written using the SVD of Y and X as follows:

Y =A'XB*+E
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A'XB*+E

UySyVy = A"UxXxVy B* + E
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y = A*XB* + E
UyXZyVy = A*UxIxVyx B* +E

Yy = Uy A*UxXxVy B*Vy + Uy EVy
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y = A*XB* + E
UyXZyVy = A*UxIxVyx B* +E

Ty = (UJA*UX) Tx (v;B*vy> +UVEVy
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y = A*XB* + E
UyXZyVy = A*UxExVy B* +E

Ty = (UpA"Ux) Ix (Vi B V) +UY EVy

AS By
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y = A*XB* + E
UyXZyVy = A*UxExVy B* +E

Ty = (UpA"Ux) Ex (Vi BV ) +UY EVy

AS By

Ty = ASExBi + Eo
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A'XB*+E

Yy = ASZXBS + Eo
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A"XB*+E
Yy = ASZXBS + Ep

@ This leads, for any matrices A, B, to:

1Y — AXB||% = |y — Uy AUxEx Vy BVy|Z,
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A"XB*+E
Yy = ASZXBS + Ep

@ This leads, for any matrices A, B, to:
1Y — AXB|2 = ||Ty — AeExBol12,

where Ay = U} AUx and By = V] BVy.
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A*XB*+ E
Xy = ASZXBS + Ep

@ This leads, for any matrices A, B, to:
IY = AXB|E = |y — Ao xBoll,

where Ap = U;,FAUX and By = V;B\/y.
@ A and Ap have the same rank, idem for B and B!
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Rewriting of the model

@ The model can be re-written using the SVD of Y and X as follows:

Y =A"XB*+E
Yy = ASZXBS + Eo

@ This leads, for any matrices A, B, to:
IY = AXB|E = |2y — AoZxBol#,
where Ap = U;,FAUX and By = V;B\/y.
@ The initial problem is equivalent to

min ||nyAosz0H%_—.
AQ,B(JZ
rank Ap/Arank Bo<r
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Solution of the re-written problem

@ We wish to solve

min ISy — AcZxBol|.
Ao,Bo:
rank AgArank Bp<r
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Solution of the re-written problem

@ We wish to solve

min ||Zy—AoZXB()H%:.
Ao,Bo:
rank ApArank Bo<r

The objective is

Ul(Y) 0’1(X)

nxp mxq F
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Solution of the re-written problem

@ We wish to solve

min ||Zy—Aosz0||%:.
Ao,Bo:
rank AgArank Bp<r

@ A natural choice is
o1(Y)

Ao, = = Diagnm(ok(Y), k <rAry)
Trary (Y)
0

nxm

gxp
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Solution of the re-written problem

@ We wish to solve

min |Zy — AoXxBo||%.
Ao,Bo:
rank AgArank Bp<r

° (AAO,, BAO,) belongs to the set of solutions of the re-written problem.
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Solution of the re-written problem

@ We wish to solve

min ||Zy—AoZXB()H%:.
Ao,Bo:
rank ApArank Bo<r

° (AO,, éOr) belongs to the set of solutions of the re-written problem.

HZY_A\OrZXéOrH%—‘: AmiBn' HZY_AOZXBOH%:'
0

,Bop:
rank ApArank Bo<r
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Solution of the re-written problem

@ We wish to solve

min ||2y—Aosz0H%:.
Ao,Bo:
rank ApArank Bo<r

° (AO,, E§0,) belongs to the set of solutions of the re-written problem.
IZy — Ao, XxBo, ||} = Jnin. ISy — AcZxBol|%.
0

,Bo:
rank ApArank Bo<r

@ The predictor AAO,ZXBAO, is the projection of >y onto the space of
matrices with rank no more than r.
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Solution of the re-written problem

@ We wish to solve

min ||Zy—AoZXB()H%:.
Ao,Bo:
rank ApArank Bo<r

° (AO,, éOr) belongs to the set of solutions of the re-written problem.
Xy — Ao, XxBo, 17 = min. IZy — AcZxBoll%.
0

rank Ao/\ranl.( Boy<r

@ We want to know how far the predictor AAO,ZXBAO, is to the signal
AsxxB§.
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Oracle inequality in the fixed rank case

@ The predictor AAO,ZXBAO, satisfies for C > 0 and for any t > 0:
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Oracle inequality in the fixed rank case

@ The predictor AO,ZXBAO, satisfies for C > 0 and for any t > 0:

|ASEx By — Ao, ZxBo,||% <9 Jnf [ AGExBg — AoXxBol|%
rankAo/(i;'ar?I; Bo<r
+ Co?(1+ t)% - r(n+p),

with probability larger than 1 — 2exp(—t?(y/n + /p)?).
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Oracle inequality in the fixed rank case

@ The predictor AO,ZXBAO, satisfies for C > 0 and for any t > 0:

|ASEx B — Ao, ZxBor||% <9 Jnf o |IAGTXBG - AoZx Bol|%
rankAo/g;ar(l)l.( Bo<r
+ Co?(1+ t)? - r(n+p),

with probability larger than 1 — 2exp(—t2(v/n + /p)?).

@ The value inf |ASEx B — AoZxBo||% is know:
Ao,Bo:
rank AgArank By<r
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Oracle inequality in the fixed rank case

@ The predictor AAO,ZXBAO, satisfies for C > 0 and for any t > 0:

IASEx By — Ao, TxBo,l|F <9 Jnf o [[Adzx By — AoXx Boll7
rankAo/g;ar(':l.( Bo<r

+ Co?(L+1)* - r(n+p),

with probability larger than 1 — 2exp(—t3(y/n + 1/p)?).

@ The value inf |ASExB; — AoZxBo||% is know:
Ao, Bo:
rank AgArank Bo<r
r*
inf  AXB* — AXB|z = ) ow(A'XB) -1,
A,B:
rank AArank B<r k=r+1
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Oracle inequality in the fixed rank case

@ The predictor AAO,ZXBAO, satisfies for C > 0 and for any t > 0:

IASEx By — Ao, TxBo,l|F <9 Jnf o [[Adzx By — AoXx Boll7
rankAo/g;ar(':l.( Bo<r

+ Co?(L+1)% - r(n+p),

with probability larger than 1 — 2exp(—t3(y/n + 1/p)?).
@ The value Ainé _ |ASExB; — AoZxBo||% is know:
rankAo/(z’rar(:l.( Boy<r

r*

/.‘n; |A*XB* — AXB|z = Y ow(A"XB*)? 1,
rank AArank B<r k=r+1

@ O(r(n+ p)) is the minimax optimal rate in the (one-sided) matrix
regression (MR) model.
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Solution of the initial problem

@ From the explicit solutions (/A\o,, éo,) we deduce (A,, é,) solution to
the initial problem:
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Solution of the initial problem

@ From the explicit solutions (AO,, EABO,) we deduce (A,, EAi,) solution to
the initial problem:
A. = Uy Ao, Uy,
B, = Vx By, Vy .
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Solution of the initial problem

@ From the explicit solutions (AO,, EABO,) we deduce (A,, EAi,) solution to

the initial problem:
A, = Uy Ao, Uy,
B, = VxBo, Vy .

@ They share the same ranks !
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Solution of the initial problem

@ From the explicit solutions (AO,, EABO,) we deduce (A,, EAi,) solution to
the initial problem:
= Uy Ao, Uy,

A,
B, = VxBo, Vy .

@ They share the same ranks !
@ The predictor ArXé, satisfies for C > 0 and for any t > 0:
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Solution of the initial problem

@ From the explicit solutions (AO,, éO,) we deduce (A,, é,) solution to
the initial problem:

A, = Uy Ay, Uy,
B, = VxBo,Vy .

@ They share the same ranks !

@ The predictor A, X B, satisfies for C > 0 and for any t > 0O:

A*XB* — A XB,||%2 <9 inf A*XB* — AXB||?
F AB: F
rank AArank B<r
+24Co?(1+ t)? - r(n+ p),

with probability larger than 1 — 2exp(—t2(v/n+ /p)?).
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Alternative predictors

@ There is an identifiability issue and the predictors are not uniquely
defined in this setting.
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Alternative predictors

@ There is an identifiability issue and the predictors are not uniquely
defined in this setting.

~ 1 A
e Consider (Ao, —Bo,) with arbitrary a > 0.
a
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Alternative predictors

@ There is an identifiability issue and the predictors are not uniquely
defined in this setting.

~ 1 4
e Consider (aAo,, aBo,) with arbitrary o > 0.

@ Let \; for all i < m A g be arbitrary positive numbers, then

~

(AOrDiagm’m(/\l, D Y Diagmq()\l_l, ) /\m}\q) ‘)
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Alternative predictors

@ There is an identifiability issue and the predictors are not uniquely
defined in this setting.

~ 1 4
e Consider (aAo,, aBo,) with arbitrary o > 0.

@ Let \; for all i < m A g be arbitrary positive numbers, then

A~

(Ao, Diagmm(M, - - -, Amng), Diagg.q( AL - . . , Amha) Bor)

o Without further strong assumptions, we can only hope to learn the
global signal, and not the parameters of the model.
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Rank-adaptive procedure

@ How to derive a rank-adaptive procedure 7

Nayel, Bettache (CREST) Two-sided Matrix Regression



Rank-adaptive procedure

@ How to derive a rank-adaptive procedure 7
@ For A > Gi(1+ t)?0%(n+ p) with CG; >0, t > 0, consider

F:=arg min {||Y—/2\,Xér||2p+)\F}-
re[nApArx]
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Rank-adaptive procedure

@ How to derive a rank-adaptive procedure ?
e For A > Gi(1+ t)?0%(n+ p) with C; > 0, t > 0, consider
F:=arg min {|| Y — A XB,||% + )\r} .

re[nApArx]

Then,

r*
|A*XB*—A:XB:||2 < min {9 > ak(A*XB*)2.1r<r*+6)\r},

re[nApArx] P

with probability larger than 1 — 2exp(—t2(y/n+ /p)?).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability 7
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
e If for some constant c in (0,1), o,«(A*XB*)? > (1 + c)2), then

B(F = r*) > B(|E|2, < &N).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o If for some constant c in (0,1), o,«(A*XB*)? > (1 + c)2), then

B(7 = r*) > P(|E|2, < c2\).

e In particular, if A > 2C(n+ p)o?(1 + t)?/c? for some absolute
constant C > 0 and for any t > 0, then 7 = r* with probability larger

than 1 — 2exp(—t3(v/n + /p)?).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o If for some constant c in (0,1), o,+(A*XB*)? > (1 + ¢)?), then

P(F = r*) > P(|E|5, < ).

e In particular, if A > 2C(n+ p)o?(1 + t)?/c? for some absolute
constant C > 0 and for any t > 0, then 7 = r* with probability larger
than 1 — 2exp(—t3(yv/n + /p)?).

@ The rank selector requires \ to be lower bounded by a function of o.
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
e If for some constant c in (0,1), o,+(A*XB*)? > (1 + c)?), then

B(F = r*) > B(|E|2, < &N).

@ The rank selector requires A to be lower bounded by a function of o2.
What if we don't have access to o2 ?
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of

o?.
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of

o?.

@ What can we do if o is unknown ?
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of

o?.

@ What can we do if o is unknown ?
e Consider the following 02 estimator

L, 1 s
7= oY~ AXB

Two-sided Matrix Regression
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of
o?.
@ What can we do if o is unknown ?

o Consider the following 02 estimator
1 A A
~2 2
Or = n*plly — A XBr[E.
o Consider the data-driven rank-adaptive procedure

F:=arg min {||Y —AXB %+ ) r&f} .

fE[rmax]
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of

o?.

@ What can we do if o is unknown ?
o Consider the following 02 estimator

L, 1 .
U? = n*plly _ArXBrH%—'-

o Consider the data-driven rank-adaptive procedure

r:=arg min {HY—A,XéerF—i—)\-r&\E}.

fE[rmax]
@ If rmax > r* and X\ = 2np/(rmax V ry), then for any t > 0:

|A*XB* — ArX Br||% < Go(1 + t)? - 02 Finax(n + p),
with probability larger than 1 — 2exp(—t2(y/n+ /p)?).
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Unknown o case

@ In previous situations, \ needed to be lower bounded by a function of

o?.

@ What can we do if o is unknown ?
o Consider the following 02 estimator

L, 1 .
U? = n*plly _ArXBrH%—'-

o Consider the data-driven rank-adaptive procedure

r:=arg min {HY—A,XéerF—i—)\-r&\E}.

re [rmax]

@ If rmax > r* and A = 2np/(rmax V ry), then for any t > 0:
IAXB* — A:XBr|2 < Co(1+ £)2 - 02 rmax(n + p),

with probability larger than 1 — 2exp(—t2(y/n+ 1/p)?).
@ Similar as in the known o case !
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Numerical simulations

@ How to numerically choose \ 7
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Numerical simulations

@ How to numerically choose \ 7

@ We derive explicit and fast to calculate procedures !
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Numerical simulations

@ How to numerically choose \ 7
@ We derive explicit and fast to calculate procedures !

@ Great numerical performances in various settings.
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What's next ?

@ What if we observe a collection of matrices (Y;, X;) ?
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What's next ?

@ What if we observe a collection of matrices (Y;, X;) ?

@ What if we model a matrix autoregressive process with the 2MR
model Yii1 = A*Y:B* + E; 7
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What's next ?

@ What if we observe a collection of matrices (Y;, X;) ?

@ What if we model a matrix autoregressive process with the 2MR
model Yi11 = A*Y:B* + E; 7

@ What if we impose other sparsity assumptions on A* and B* 7
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Thanks for listening !
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability 7
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

o Consider the A-rank of a matrix M, ry()), as the number of singular
values above V).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o Consider the A-rank of a matrix M, ry()), as the number of singular
values above V).

rank M
r/\/]()\) =1V Z ]'Uk(M)QZ/\'
k=1
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

o Consider the A-rank of a matrix M, ry(\), as the number of singular
values above V/\.

rank M
rM(>\) =1V Z ]'O'k(M)2Z)\'
k=1

It performs a hard thresholding of the singular values !
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o Consider the A-rank of a matrix M, ry(\), as the number of singular
values above v/)\.

rank M
r[\/]()\) =1V Z lak(M)22)\‘
k=1

e If A > a,,(Y)?, there is a unique solution 7 and it is actually the
A—rank of Y, i.e. F=ry(N).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o Consider the A-rank of a matrix M, ry (), as the number of singular
values above V).

rank M
r/\/[()\) =1V Z ]'O'k(M)ZZ)\'
k=1

e If A > 0,,(Y)?, there is a unique solution 7 and it is actually the
A—rank of Y, i.e. 7= ry(A).

F:=arg min {||Y — AXB. %+ /\r} :

re[nApArx]
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?
o Consider the A-rank of a matrix M, ry(\), as the number of singular
values above v/)\.

rank M
r[\/]()\) =1V Z lak(M)22)\‘
k=1

o If the A-rank of the signal A*XB* is well separated, the procedure
retrieves it with high probability.
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

e If for some constant ¢ in (0,1), o,*(/\)(A*XB*)2 > (1+ c)2)\ and
Ur*(A)+1(A*XB*)2 <(1- C)Q)\, then

P(P = r"(A)) = P(|E[l3, < ).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

@ If for some constant ¢ in (0,1), O',_*(A)(A*XB*)Q > (14 )2\ and
o (n)11(A*XB*)? < (1 —c)?\, then

P(F = r*(\)) = P(|[Ell3, < ).

@ r*()\) coincides with the true underlying rank r* is equivalent to
having o« (A*XB*)? > \ > 0.
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

e If for some constant ¢ in (0,1), ar*(/\)(A*XB*)2 > (1+ ¢)\ and
Ur*(A)+1(A*XB*)2 < (1 —c)?), then

P(F = r*(\)) = P(|[Ell3, < c*).

@ r*(\) coincides with the true underlying rank r* is equivalent to
having o,+(A*XB*)? > X\ > 0.

@ |t is necessary that a signal-to-noise ratio, given here by
o+ (A*XB*)?/o1(E)? be significant in order to have the true
underlying rank r* selected by 7.
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

e If for some constant c in (0,1), o« (A*XB*)? > (1 + ¢)?), then

P(F = r*) > P(|E|3, < ¢*N).
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

e If for some constant c in (0,1), o,+(A*XB*)? > (1 + c)?), then

P(P = r") = P(|[E|3, < c*X).

e In particular, if A > 2C(n+ p)o?(1 + t)?/c? for some absolute
constant C > 0 and for any t > 0, then 7 = r* with probability larger

than 1 — 2exp(—t3(v/n + /p)?).

Nayel, Bettache (CREST) Two-sided Matrix Regression



Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

e If for some constant c in (0,1), o,+(A*XB*)? > (1 + c)?), then

B(7 = r*) > B(|E|2, < c2\).

e In particular, if A > 2C(n+ p)o?(1 + t)?/c? for some absolute
constant C > 0 and for any t > 0, then 7 = r* with probability larger

than 1 — 2exp(—t3(v/n + /p)?).

@ The rank selector requires \ to be lower bounded by a function of o
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Consistent rank selection

@ Can we retrieve the true rank of the signal with high probability ?

o If for some constant c in (0,1), o,+(A*XB*)? > (1 + ¢)?), then

P(F = r*) > P(|E|3, < ).

@ The rank selector requires A to be lower bounded by a function of o2.
What if we don't have access to o2 ?
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Simulation context

@ Consider n =100 and p = 300 with Y € R™P together with m = 50
and g = 60 with X € R™*9,

Nayel, Bettache (CREST) Two-sided Matrix Regression



Simulation context

@ Consider n =100 and p = 300 with Y € R"*P together with m = 50
and g = 60 with X € R™*9,

@ We randomly generate three matrices: A*, B*, and X, with
independent random gaussian entries with mean 0 and variance 1.
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Simulation context

@ Consider n =100 and p = 300 with Y € R"*P together with m = 50
and g = 60 with X € R™*9,

o We randomly generate three matrices: A*, B*, and X, with
independent random gaussian entries with mean 0 and variance 1.

@ These matrices are then projected onto the best low-rank matrix
approximation, with the matrix A* having a rank r; = 16, the matrix
B* having a rank rg = 12, and the matrix X having a rank rx = 25.
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Simulation context

@ Consider n =100 and p = 300 with Y € R"*P together with m = 50
and g = 60 with X € R™*9,

o We randomly generate three matrices: A*, B*, and X, with
independent random gaussian entries with mean 0 and variance 1.

@ These matrices are then projected onto the best low-rank matrix
approximation, with the matrix A* having a rank r; = 16, the matrix
B* having a rank rg = 12, and the matrix X having a rank rx = 25.

@ The signal matrix is defined as A*XB* and shows a rank of 12 in all
experiments.
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Simulation context

@ Consider n =100 and p = 300 with Y € R"*P together with m = 50
and g = 60 with X € R™*9,

@ We randomly generate three matrices: A*, B*, and X, with
independent random gaussian entries with mean 0 and variance 1.

@ These matrices are then projected onto the best low-rank matrix
approximation, with the matrix A* having a rank r; = 16, the matrix
B* having a rank rg = 12, and the matrix X having a rank rx = 25.

@ The signal matrix is defined as A*XB* and shows a rank of 12 in all
experiments.

e We define various settings for the variance o of the Gaussian noise E
so that the signal-to-noise ratio SNR := o, (A*XB*)? /o1 (E)? varies
approximately in the range [0.5, 2].
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Predictor performances

Risk

Figure: Evolution of the risk

values of o.
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|A X B, — A*XB*||%

1A= XB*|[%

Two-sided Matrix Regression

in function of r for different



Rank recovering

99 aagaq
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o=10
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log(A)

Figure: Evolution of the estimated 7 as a function of log()) for different values of
.
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