Two-sided Matrix Regression

N. Bettache ${ }^{1} \quad$ C. Butucea ${ }^{1}$
${ }^{1}$ CREST
2022

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction

6 Numerical simulations and conclusion
(7) Supplementary slides

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks
(4) Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
(6) Numerical simulations and conclusion
(7) Supplementary slides

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)=
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)=
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)=
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)=
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)= \\
& \left(\begin{array}{cccc}
X_{11} & \cdots & X_{1 q} \\
\vdots & & \vdots \\
X_{i 1} & \cdots & X_{i q} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n q}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
B_{11}^{*} & \cdots & B_{1 j}^{*} & \cdots & B_{1 p}^{*} \\
\vdots & & \vdots & & \vdots \\
\vdots & & \vdots & & \vdots \\
B_{q 1}^{*} & \cdots & B_{q j}^{*} & \cdots & B_{q p}^{*}
\end{array}\right)+E
\end{aligned}
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{c}
Y_{1 j} \\
\vdots \\
Y_{i j} \\
\vdots \\
Y_{n j}
\end{array}\right)=\left(\begin{array}{ccccc}
X_{11} & \cdots & X_{1 k} & \cdots & X_{1 q} \\
\vdots & & \vdots & & \vdots \\
X_{i 1} & \cdots & X_{i k} & \cdots & X_{i q} \\
\vdots & & \vdots & & \vdots \\
X_{n 1} & \cdots & X_{n k} & \cdots & X_{n q}
\end{array}\right) \cdot\left(\begin{array}{c}
B_{1 j}^{*} \\
\vdots \\
B_{k j}^{*} \\
\vdots \\
B_{q j}^{*}
\end{array}\right)+E
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\left(\begin{array}{c}
Y_{1 j} \\
\vdots \\
Y_{i j} \\
\vdots \\
Y_{n j}
\end{array}\right)=B_{1 j}^{*} \cdot\left(\begin{array}{c}
X_{11} \\
\vdots \\
X_{i 1} \\
\vdots \\
X_{n 1}
\end{array}\right)+\cdots+B_{k j}^{*} \cdot\left(\begin{array}{c}
X_{1 k} \\
\vdots \\
X_{i k} \\
\vdots \\
X_{n k}
\end{array}\right)+\cdots+B_{q j}^{*} \cdot\left(\begin{array}{c}
X_{1 q} \\
\vdots \\
X_{i q} \\
\vdots \\
X_{n q}
\end{array}\right)+E
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\forall j \in[p], \quad Y_{j}=\sum_{i=1}^{q} B_{i j}^{*} X_{i}
$$

Multivariate Linear Regression

- Collect $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ with $y_{i} \in \mathbb{R}^{p}$ and $x_{i} \in \mathbb{R}^{q}$.
- Form $Y \in \mathbb{R}^{n \times p}$ and $X \in \mathbb{R}^{n \times q}$.
- Assume $\exists B^{*} \in \mathbb{R}^{q \times p}$ s.t $Y=X B^{*}+E$ where E is a noise matrix.

$$
\forall j \in[p], \quad Y_{j}=\sum_{i=1}^{q} B_{i j}^{*} X_{i}
$$

- The columns of Y can be well explained by linear combinations of the columns of X.

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)= \\
& \left(\begin{array}{cccccc}
X_{11} & \cdots & X_{1 q} \\
\vdots & & \vdots \\
X_{i 1} & \cdots & X_{i q} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n q}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
B_{11}^{*} & \cdots & B_{1 j}^{*} & \cdots & B_{1 p}^{*} \\
\vdots & & \vdots & & \vdots \\
\vdots & & \vdots & & \vdots \\
B_{q 1}^{*} & \cdots & B_{q j}^{*} & \cdots & B_{q p}^{*}
\end{array}\right)+E
\end{aligned}
$$

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- It ignores the multivariate nature of the response!

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.
- It ignores the multivariate nature of the response!
- The columns of Y may be (heavily) correlated and the Least Squares estimator will not consider these correlations.

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- It ignores the multivariate nature of the response!
- The columns of Y may be (heavily) correlated and the Least Squares estimator will not consider these correlations.
- Solution: impose a low-rank structure on B^{*}.

Low-rank structure on B^{*}.

- Without any constraint on the structure of B^{*} (full rank), this is equivalent to performing p independent linear regressions.
- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.
- It ignores the multivariate nature of the response!
- The columns of Y may be (heavily) correlated and the Least Squares estimator will not consider these correlations.
- Solution: impose a low-rank structure on B^{*}.
- This is studied in the literature.

How Y depends on the signal $X B^{*}$?

- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.

How Y depends on the signal $X B^{*}$?

- The $j^{\text {th }}$ column of Y only depends on the $j^{\text {th }}$ column of B^{*}.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)= \\
& \left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 q} \\
\vdots & & \vdots \\
X_{i 1} & \cdots & X_{i q} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n q}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
B_{11}^{*} & \cdots & B_{1 j}^{*} & \cdots & B_{1 p}^{*} \\
\vdots & & \vdots & & \vdots \\
\vdots & & \vdots & & \vdots \\
B_{q 1}^{*} & \cdots & B_{q j}^{*} & \cdots & B_{q p}^{*}
\end{array}\right)+E
\end{aligned}
$$

How Y depends on the signal $X B^{*}$?

- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- The $i^{\text {th }}$ row of Y only depends on the $i^{\text {th }}$ row of X.

How Y depends on the signal $X B^{*}$?

- The $j^{\text {th }}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- The $i^{\text {th }}$ row of Y only depends on the $i^{\text {th }}$ row of X.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
Y_{11} & \cdots & Y_{1 j} & \cdots & Y_{1 p} \\
\vdots & & \vdots & & \vdots \\
Y_{i 1} & \cdots & Y_{i j} & \cdots & Y_{i p} \\
\vdots & & \vdots & & \vdots \\
Y_{n 1} & \cdots & Y_{n j} & \cdots & Y_{n p}
\end{array}\right)= \\
& \left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 q} \\
\vdots & & \vdots \\
X_{i 1} & \cdots & X_{i q} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n q}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
B_{11}^{*} & \cdots & B_{1 j}^{*} & \cdots & B_{1 p}^{*} \\
\vdots & & \vdots & & \vdots \\
\vdots & & \vdots & & \vdots \\
B_{q 1}^{*} & \cdots & B_{q j}^{*} & \cdots & B_{q p}^{*}
\end{array}\right)+E
\end{aligned}
$$

How Y depends on the signal $X B^{*}$?

- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- The $i^{\text {th }}$ row of Y only depends on the $i^{\text {th }}$ row of X.
- If the columns of Y are correlated, we can impose a low rank structure on B^{*}.

How Y depends on the signal $X B^{*}$?

- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- The $i^{\text {th }}$ row of Y only depends on the $i^{\text {th }}$ row of X.
- If the columns of Y are correlated, we can impose a low rank structure on B^{*}.
- What if the rows of Y are correlated ?

How Y depends on the signal $X B^{*}$?

- The $j^{t h}$ column of Y only depends on the $j^{t h}$ column of B^{*}.
- The $i^{\text {th }}$ row of Y only depends on the $i^{\text {th }}$ row of X.
- If the columns of Y are correlated, we can impose a low rank structure on B^{*}.
- What if the rows of Y are correlated ?
- The design matrix X is fixed so we cannot impose anything on its structure.

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?
- Economic data store economic indicators as column features and countries as rows.

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?
- Economic data store economic indicators as column features and countries as rows.

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?
- Economic data store economic indicators as column features and countries as rows.
- It can be explained by a smaller matrix containing a smaller number of countries (geographical or economic representatives) and a few economic features (one representative for each category).

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?
- Economic data store economic indicators as column features and countries as rows.
- It can be explained by a smaller matrix containing a smaller number of countries (geographical or economic representatives) and a few economic features (one representative for each category).

Example

- Do we have examples where we want to regress a matrix Y with correlated rows and columns on a fixed design matrix X ?
- Economic data store economic indicators as column features and countries as rows.
- It can be explained by a smaller matrix containing a smaller number of countries (geographical or economic representatives) and a few economic features (one representative for each category).
- Other cases: meteorological data, medical or pharmaceutical data and so on.

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
6) Numerical simulations and conclusion
(7) Supplementary slides

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

- Two parameter matrices $A^{*} \in \mathbb{R}^{n \times m}$ and $B^{*} \in \mathbb{R}^{q \times p}$:

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

- Two parameter matrices $A^{*} \in \mathbb{R}^{n \times m}$ and $B^{*} \in \mathbb{R}^{q \times p}$: low-rank.

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

- Two parameter matrices $A^{*} \in \mathbb{R}^{n \times m}$ and $B^{*} \in \mathbb{R}^{q \times p}$: low-rank.
- The noise matrix E is assumed to have independent centered σ-sub-Gaussian entries.

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

- Two parameter matrices $A^{*} \in \mathbb{R}^{n \times m}$ and $B^{*} \in \mathbb{R}^{q \times p}$: low-rank.
- The noise matrix E is assumed to have independent centered σ-sub-Gaussian entries.
- Objective: Retrieve the signal $A^{*} X B^{*}$.

Two-Sided Matrix Regression

- Observe the matrix $Y \in \mathbb{R}^{n \times p}$ and a design matrix $X \in \mathbb{R}^{m \times q}$.
- They are related via the 2 MR model

$$
Y=A^{*} X B^{*}+E .
$$

- Two parameter matrices $A^{*} \in \mathbb{R}^{n \times m}$ and $B^{*} \in \mathbb{R}^{q \times p}$: low-rank.
- The noise matrix E is assumed to have independent centered σ-sub-Gaussian entries.
- Objective: Retrieve the signal $A^{*} X B^{*}$.
- \triangle : The problem is not convex anymore!

Related models

$$
\begin{gathered}
Y \in \mathbb{R}^{n \times p} \quad \text { and } \quad X \in \mathbb{R}^{m \times q} \\
Y=A^{*} X B^{*}+E
\end{gathered}
$$

The 2MR model encompasses known models:

Related models

$$
\begin{gathered}
Y \in \mathbb{R}^{n \times p} \text { and } X \in \mathbb{R}^{m \times q}, \\
Y=A^{*} X B^{*}+E .
\end{gathered}
$$

The 2MR model encompasses known models:

- If $n=m$ and A^{*} is the identity, the 2 MR model becomes the (one-sided) matrix regression (MR) model $Y=X B^{*}+E$.

Related models

$$
\begin{gathered}
Y \in \mathbb{R}^{n \times p} \quad \text { and } \quad X \in \mathbb{R}^{m \times q} \\
Y=A^{*} X B^{*}+E
\end{gathered}
$$

The 2MR model encompasses known models:

- If $n=m$ and A^{*} is known to be the identity, the 2 MR model becomes the (one-sided) matrix regression (MR) model $Y=X B^{*}+E$.
- If $m=q$ and X is the identity matrix, the 2MR model becomes a rank m factorisation model of the signal $M^{*}=A^{*} B^{*}$ observed with noise.

Related models

$$
Y \in \mathbb{R}^{n \times p} \quad \text { and } \quad X \in \mathbb{R}^{m \times q},
$$

$$
Y=A^{*} X B^{*}+E .
$$

The 2MR model encompasses known models:

- If $n=m$ and A^{*} is known to be the identity, the 2MR model becomes the (one-sided) matrix regression (MR) model $Y=X B^{*}+E$.
- If $m=q$ and X is the identity matrix, the $2 M R$ model becomes a rank m factorisation model of the signal $M^{*}=A^{*} B^{*}$ observed with noise.
Unifies Low-rank Matrix Regression and Low-Rank Matrix Factorization under a same framework.

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
6) Numerical simulations and conclusion
(7) Supplementary slides

Objective

If we know $r=\operatorname{rank} A^{*} X B^{*}$ we can exploit it.

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k$.

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k X$.
- Let us build explicit predictors $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solutions to the non-convex constrained minimization problem:

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k X$.
- Let us build explicit predictors $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solutions to the non-convex constrained minimization problem:

$$
\min _{\substack{A, B: \\ \operatorname{rank} A \wedge \operatorname{rank} B \leq r}}\|Y-A X B\|_{F}^{2} .
$$

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k X$.
- Let us build explicit predictors $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solutions to the non-convex constrained minimization problem:

$$
\min _{\substack{A, B: \\ \operatorname{rank} \\ A \wedge \operatorname{rank} B \leq r}}\|Y-A X B\|_{F}^{2}
$$

- Note: $\operatorname{rank} A^{*} X B^{*} \leq \min \left(\operatorname{rank} A^{*}, \operatorname{rank} X, \operatorname{rank} B^{*}\right)$.

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k X$.
- Let us build explicit predictors $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solutions to the non-convex constrained minimization problem:

$$
\min _{\substack{A, B: \\ \operatorname{rank} A \wedge \operatorname{rank} B \leq r}}\|Y-A X B\|_{F}^{2} .
$$

- Note: $\operatorname{rank} A^{*} X B^{*} \leq \min \left(\operatorname{rank} A^{*}, \operatorname{rank} X, \operatorname{rank} B^{*}\right)$.
- Intuition: There is lost information in the product and we can only hope to recover predictors \hat{A} and \hat{B} with respective ranks no more than r.

Objective

- Let's fix $r \in\left[n \wedge p \wedge r_{X}\right]$ where $r_{X}=r a n k X$.
- Let us build explicit predictors $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solutions to the non-convex constrained minimization problem:

$$
\min _{\substack{A, B: \\ \operatorname{rank} A \operatorname{rank} B \leq r}}\|Y-A X B\|_{F}^{2} .
$$

- Note: $\operatorname{rank} A^{*} X B^{*} \leq \min \left(\operatorname{rank} A^{*}, \operatorname{rank} X, \operatorname{rank} B^{*}\right)$.
- Intuition: There is lost information in the product and we can only hope to recover predictors \hat{A} and \hat{B} with respective ranks no more than r.
- Global idea: $Y \longrightarrow Y_{r} \longrightarrow \hat{A} X \hat{B}$.

Rewriting of the model

The Frobenius norm is unitarily invariant and the SVD brings out unitary matrices.

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
Y=A^{*} X B^{*}+E
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{aligned}
Y & =A^{*} X B^{*}+E \\
U_{Y} \Sigma_{Y} V_{Y}^{\top} & =A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*}+E
\end{aligned}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
U_{Y} \Sigma_{Y} V_{Y}^{\top}=A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*}+E \\
\Sigma_{Y}=U_{Y}^{\top} A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*} V_{Y}+U_{Y}^{\top} E V_{Y}
\end{gathered}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
U_{Y} \Sigma_{Y} V_{Y}^{\top}=A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*}+E \\
\Sigma_{Y}=\left(U_{Y}^{\top} A^{*} U_{X}\right) \Sigma_{X}\left(V_{X}^{\top} B^{*} V_{Y}\right)+U_{Y}^{\top} E V_{Y}
\end{gathered}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
U_{Y} \Sigma_{Y} V_{Y}^{\top}=A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*}+E \\
\Sigma_{Y}=\underbrace{\left(U_{Y}^{\top} A^{*} U_{X}\right)}_{A_{0}^{*}} \Sigma_{X} \underbrace{\left(V_{X}^{\top} B^{*} V_{Y}\right)}_{B_{0}^{*}}+U_{Y}^{\top} E V_{Y}
\end{gathered}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
U_{Y} \Sigma_{Y} V_{Y}^{\top}=A^{*} U_{X} \Sigma_{X} V_{X}^{\top} B^{*}+E \\
\Sigma_{Y}=\underbrace{\left(U_{Y}^{\top} A^{*} U_{X}\right)}_{A_{0}^{*}} \Sigma_{X} \underbrace{\left(V_{X}^{\top} B^{*} V_{Y}\right)}_{B_{0}^{*}}+U_{Y}^{\top} E V_{Y} \\
\Sigma_{Y}=A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{gathered}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
\Sigma_{Y}=A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{gathered}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
\Sigma_{Y}=A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{gathered}
$$

- This leads, for any matrices A, B, to:

$$
\|Y-A X B\|_{F}^{2}=\left\|\Sigma_{Y}-U_{Y}^{\top} A U_{X} \Sigma_{X} V_{X}^{T} B V_{Y}\right\|_{F}^{2}
$$

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
\Sigma_{Y}=A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{gathered}
$$

- This leads, for any matrices A, B, to:

$$
\|Y-A X B\|_{F}^{2}=\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

where $A_{0}=U_{Y}^{\top} A U_{X}$ and $B_{0}=V_{X}^{\top} B V_{Y}$.

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{gathered}
Y=A^{*} X B^{*}+E \\
\Sigma_{Y}=A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{gathered}
$$

- This leads, for any matrices A, B, to:

$$
\|Y-A X B\|_{F}^{2}=\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

where $A_{0}=U_{Y}^{\top} A U_{X}$ and $B_{0}=V_{X}^{\top} B V_{Y}$.

- A and A_{0} have the same rank, idem for B and B_{0} !

Rewriting of the model

- The model can be re-written using the SVD of Y and X as follows:

$$
\begin{aligned}
Y & =A^{*} X B^{*}+E \\
\Sigma_{Y} & =A_{0}^{*} \Sigma_{X} B_{0}^{*}+E_{0}
\end{aligned}
$$

- This leads, for any matrices A, B, to:

$$
\|Y-A X B\|_{F}^{2}=\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

where $A_{0}=U_{Y}^{\top} A U_{X}$ and $B_{0}=V_{X}^{\top} B V_{Y}$.

- The initial problem is equivalent to

$$
\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} \wedge \text { ank } B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} .
$$

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \text { rank } B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ A_{0} \wedge \operatorname{rank} B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

The objective is

Solution of the re-written problem

- We wish to solve

$$
\min _{A_{0}, B_{0}:}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

$\operatorname{rank} A_{0} \wedge$ rank $B_{0} \leq r$

- A natural choice is

$$
\begin{aligned}
& \hat{A}_{0 r}=\underbrace{\left(\begin{array}{cccc}
\sigma_{1}(Y) & & & \\
& \ddots & & \\
& & \sigma_{r \wedge r_{Y}}(Y) & \\
& & & 0
\end{array}\right)}_{n \times m}=\operatorname{Diag}_{n, m}\left(\sigma_{k}(Y), k \leq r \wedge r_{Y}\right) \\
& \hat{B}_{0 r}=\underbrace{\left(\begin{array}{ccc}
\sigma_{1}(X)^{-1} & & \\
& \ddots & \\
& & \sigma_{r}(X)^{-1} \\
& & 0
\end{array}\right)}_{q \times p}=\operatorname{Diag}_{q, p}\left(\sigma_{k}(X)^{-1}, k \leq r\right)
\end{aligned}
$$

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \operatorname{rank} \\ B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} .
$$

- $\left(\hat{A}_{0_{r}}, \hat{B}_{0_{r}}\right)$ belongs to the set of solutions of the re-written problem.

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \text { rank } B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

- $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ belongs to the set of solutions of the re-written problem.

$$
\left\|\Sigma_{Y}-\hat{A}_{0_{r}} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2}=\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \text { rank } B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \operatorname{rank} \\ B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} .
$$

- $\left(\hat{A}_{0_{r}}, \hat{B}_{0_{r}}\right)$ belongs to the set of solutions of the re-written problem.

$$
\left\|\Sigma_{Y}-\hat{A}_{0 r} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2}=\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \operatorname{rank} B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

- The predictor $\hat{A}_{0_{r}} \Sigma_{X} \hat{B}_{0 r}$ is the projection of Σ_{Y} onto the space of matrices with rank no more than r.

Solution of the re-written problem

- We wish to solve

$$
\min _{\substack{A_{0}, B_{0}: \\ A_{0} \wedge \text { rank } B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

- $\left(\hat{A}_{0_{r}}, \hat{B}_{0_{r}}\right)$ belongs to the set of solutions of the re-written problem.

$$
\left\|\Sigma_{Y}-\hat{A}_{0_{r}} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2}=\min _{\substack{A_{0}, B_{0}: \\ \operatorname{rank} A_{0} \wedge \operatorname{rank} B_{0} \leq r}}\left\|\Sigma_{Y}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}
$$

- We want to know how far the predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}$ is to the signal $A_{0}^{*} \Sigma_{X} B_{0}^{*}$.

Oracle inequality in the fixed rank case

- The predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}$ satisfies for $C>0$ and for any $t>0$:

Oracle inequality in the fixed rank case

- The predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}$ satisfies for $C>0$ and for any $t>0$:

$$
\begin{gathered}
\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}\right\|_{F}^{2} \leq 9 \inf _{\substack{A_{0}, B_{0}: \\
\text { rank } A_{0} \wedge \text { rank } \\
B_{0} \leq r}}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} \\
\\
+C \sigma^{2}(1+t)^{2} \cdot r(n+p),
\end{gathered}
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Oracle inequality in the fixed rank case

- The predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}$ satisfies for $C>0$ and for any $t>0$:

$$
\begin{gathered}
\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-\hat{A}_{0 r} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2} \leq 9 \inf _{\substack{A_{0}, B_{0}: \\
\text { rank } A_{0} \wedge \text { rank } \\
B_{0} \leq r}}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} \\
+C \sigma^{2}(1+t)^{2} \cdot r(n+p),
\end{gathered}
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

- The value $\inf _{A_{0}, B_{0}:}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}$ is know: rank $A_{0} \wedge$ rank $B_{0} \leq r$

Oracle inequality in the fixed rank case

- The predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B_{0 r}}$ satisfies for $C>0$ and for any $t>0$:

$$
\begin{aligned}
&\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-\hat{A}_{0 r} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2} \leq 9 \inf _{\substack{A_{0}, B_{0}: \\
\operatorname{rank} A_{0} \wedge \text { rank } B_{0} \leq r}}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} \\
&+C \sigma^{2}(1+t)^{2} \cdot r(n+p)
\end{aligned}
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

- The value $\inf _{A_{0}, B_{0}:}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}$ is know:
rank $A_{0} \wedge$ rank $B_{0} \leq r$

$$
\inf _{\substack{A, B: \\ A \wedge \operatorname{rank} B \leq r}}\left\|A^{*} X B^{*}-A X B\right\|_{F}^{2}=\sum_{k=r+1}^{r^{*}} \sigma_{k}\left(A^{*} X B^{*}\right)^{2} \cdot \mathbf{1}_{r<r^{*}}
$$

Oracle inequality in the fixed rank case

- The predictor $\hat{A}_{0 r} \Sigma_{X} \hat{B}_{0 r}$ satisfies for $C>0$ and for any $t>0$:

$$
\begin{aligned}
&\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-\hat{A}_{0 r} \Sigma_{X} \hat{B}_{0 r}\right\|_{F}^{2} \leq 9 \inf _{\substack{A_{0}, B_{0}: \\
\operatorname{rank} A_{0} \wedge \text { rank } \\
B_{0} \leq r}}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2} \\
&+C \sigma^{2}(1+t)^{2} \cdot r(n+p)
\end{aligned}
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

- The value $\inf _{A_{0}, B_{0}:}\left\|A_{0}^{*} \Sigma_{X} B_{0}^{*}-A_{0} \Sigma_{X} B_{0}\right\|_{F}^{2}$ is know: rank $A_{0} \wedge$ rank $B_{0} \leq r$

$$
\inf _{\substack{A, B: \\ A \wedge \text { rank } B \leq r}}\left\|A^{*} X B^{*}-A X B\right\|_{F}^{2}=\sum_{k=r+1}^{r^{*}} \sigma_{k}\left(A^{*} X B^{*}\right)^{2} \cdot \mathbf{1}_{r<r^{*}}
$$

- $\mathcal{O}(r(n+p))$ is the minimax optimal rate in the (one-sided) matrix regression (MR) model.

Solution of the initial problem

- From the explicit solutions $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ we deduce $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solution to the initial problem:

Solution of the initial problem

- From the explicit solutions $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ we deduce $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solution to the initial problem:

$$
\begin{aligned}
& \hat{A}_{r}=U_{Y} \hat{A}_{0 r} U_{X}^{\top} \\
& \hat{B}_{r}=V_{X} \hat{B}_{0 r} V_{Y}^{\top}
\end{aligned}
$$

Solution of the initial problem

- From the explicit solutions $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ we deduce $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solution to the initial problem:

$$
\begin{aligned}
& \hat{A}_{r}=U_{Y} \hat{A}_{0 r} U_{X}^{\top} \\
& \hat{B}_{r}=V_{X} \hat{B}_{0 r} V_{Y}^{\top}
\end{aligned}
$$

- They share the same ranks!

Solution of the initial problem

- From the explicit solutions $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ we deduce $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solution to the initial problem:

$$
\begin{aligned}
& \hat{A}_{r}=U_{Y} \hat{A}_{0 r} U_{X}^{\top} \\
& \hat{B}_{r}=V_{X} \hat{B}_{0 r} V_{Y}^{\top}
\end{aligned}
$$

- They share the same ranks!
- The predictor $\hat{A}_{r} X \hat{B}_{r}$ satisfies for $C>0$ and for any $t>0$:

Solution of the initial problem

- From the explicit solutions $\left(\hat{A}_{0 r}, \hat{B}_{0 r}\right)$ we deduce $\left(\hat{A}_{r}, \hat{B}_{r}\right)$ solution to the initial problem:

$$
\begin{aligned}
& \hat{A}_{r}=U_{Y} \hat{A}_{0 r} U_{X}^{\top} \\
& \hat{B}_{r}=V_{X} \hat{B}_{0 r} V_{Y}^{\top}
\end{aligned}
$$

- They share the same ranks!
- The predictor $\hat{A}_{r} X \hat{B}_{r}$ satisfies for $C>0$ and for any $t>0$:

$$
\begin{aligned}
&\left\|A^{*} X B^{*}-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2} \leq 9 \inf _{\substack{A, B: \\
\operatorname{rank} A \wedge \operatorname{rank} B \leq r}}\left\|A^{*} X B^{*}-A X B\right\|_{F}^{2} \\
&+24 C \sigma^{2}(1+t)^{2} \cdot r(n+p)
\end{aligned}
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Alternative predictors

- There is an identifiability issue and the predictors are not uniquely defined in this setting.

Alternative predictors

- There is an identifiability issue and the predictors are not uniquely defined in this setting.
- Consider $\left(\alpha \hat{A}_{0 r}, \frac{1}{\alpha} \hat{B}_{0 r}\right)$ with arbitrary $\alpha>0$.

Alternative predictors

- There is an identifiability issue and the predictors are not uniquely defined in this setting.
- Consider $\left(\alpha \hat{A}_{0 r}, \frac{1}{\alpha} \hat{B}_{0 r}\right)$ with arbitrary $\alpha>0$.
- Let λ_{i} for all $i \leq m \wedge q$ be arbitrary positive numbers, then

$$
\left(\hat{A}_{0_{r}} \operatorname{Diag}_{m, m}\left(\lambda_{1}, \ldots, \lambda_{m \wedge q}\right), \operatorname{Diag}_{q, q}\left(\lambda_{1}^{-1}, \ldots, \lambda_{m \wedge q}^{-1}\right) \hat{B}_{0 r}\right)
$$

Alternative predictors

- There is an identifiability issue and the predictors are not uniquely defined in this setting.
- Consider $\left(\alpha \hat{A}_{0 r}, \frac{1}{\alpha} \hat{B}_{0 r}\right)$ with arbitrary $\alpha>0$.
- Let λ_{i} for all $i \leq m \wedge q$ be arbitrary positive numbers, then

$$
\left(\hat{A}_{0_{r}} \operatorname{Diag}_{m, m}\left(\lambda_{1}, \ldots, \lambda_{m \wedge q}\right), \operatorname{Diag}_{q, q}\left(\lambda_{1}^{-1}, \ldots, \lambda_{m \wedge q}^{-1}\right) \hat{B}_{0_{r}}\right)
$$

- Without further strong assumptions, we can only hope to learn the global signal, and not the parameters of the model.

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
6) Numerical simulations and conclusion
(7) Supplementary slides

Rank-adaptive procedure

- How to derive a rank-adaptive procedure ?

Rank-adaptive procedure

- How to derive a rank-adaptive procedure ?
- For $\lambda \geq C_{1}(1+t)^{2} \sigma^{2}(n+p)$ with $C_{1}>0, t>0$, consider

$$
\hat{r}:=\arg \min _{r \in[n \wedge p \wedge r x]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda r\right\} .
$$

Rank-adaptive procedure

- How to derive a rank-adaptive procedure ?
- For $\lambda \geq C_{1}(1+t)^{2} \sigma^{2}(n+p)$ with $C_{1}>0, t>0$, consider

$$
\hat{r}:=\arg \min _{r \in\left[n \wedge p \wedge r_{X}\right]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda r\right\} .
$$

Then,

$$
\left\|A^{*} X B^{*}-\hat{A}_{\hat{F}} X \hat{B}_{F}\right\|_{F}^{2} \leq \min _{r \in[n \wedge \rho \wedge r x]}\left\{9 \sum_{k=r+1}^{r^{*}} \sigma_{k}\left(A^{*} X B^{*}\right)^{2} \cdot \mathbf{1}_{r<r^{*}}+6 \lambda r\right\},
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- In particular, if $\lambda \geq 2 C(n+p) \sigma^{2}(1+t)^{2} / c^{2}$ for some absolute constant $C>0$ and for any $t>0$, then $\hat{r}=r^{*}$ with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- In particular, if $\lambda \geq 2 C(n+p) \sigma^{2}(1+t)^{2} / c^{2}$ for some absolute constant $C>0$ and for any $t>0$, then $\hat{r}=r^{*}$ with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.
- The rank selector requires λ to be lower bounded by a function of σ^{2}.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- The rank selector requires λ to be lower bounded by a function of σ^{2}. What if we don't have access to σ^{2} ?

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
(6) Numerical simulations and conclusion
(7) Supplementary slides

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.
- What can we do if σ is unknown ?

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.
- What can we do if σ is unknown ?
- Consider the following σ^{2} estimator

$$
\widehat{\sigma}_{r}^{2}=\frac{1}{n p}\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}
$$

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.
- What can we do if σ is unknown ?
- Consider the following σ^{2} estimator

$$
\widehat{\sigma}_{r}^{2}=\frac{1}{n p}\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}
$$

- Consider the data-driven rank-adaptive procedure

$$
\bar{r}:=\arg \min _{r \in\left[r_{m a x}\right]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda \cdot r \widehat{\sigma}_{r}^{2}\right\} .
$$

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.
- What can we do if σ is unknown?
- Consider the following σ^{2} estimator

$$
\widehat{\sigma}_{r}^{2}=\frac{1}{n p}\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}
$$

- Consider the data-driven rank-adaptive procedure

$$
\bar{r}:=\arg \min _{r \in\left[r_{\text {max }}\right]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda \cdot r \widehat{\sigma}_{r}^{2}\right\} .
$$

- If $r_{\text {max }} \geq r^{*}$ and $\lambda=2 n p /\left(r_{\max } \vee r_{Y}\right)$, then for any $t>0$:

$$
\left\|A^{*} X B^{*}-\hat{A}_{\bar{r}} X \hat{B}_{\bar{r}}\right\|_{F}^{2} \leq C_{2}(1+t)^{2} \cdot \sigma^{2} r_{\max }(n+p)
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Unknown σ case

- In previous situations, λ needed to be lower bounded by a function of σ^{2}.
- What can we do if σ is unknown ?
- Consider the following σ^{2} estimator

$$
\widehat{\sigma}_{r}^{2}=\frac{1}{n p}\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}
$$

- Consider the data-driven rank-adaptive procedure

$$
\bar{r}:=\arg \min _{r \in\left[r_{m a x}\right]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda \cdot r \widehat{\sigma}_{r}^{2}\right\} .
$$

- If $r_{\text {max }} \geq r^{*}$ and $\lambda=2 n p /\left(r_{\text {max }} \vee r_{Y}\right)$, then for any $t>0$:

$$
\left\|A^{*} X B^{*}-\hat{A}_{\bar{r}} X \hat{B}_{\bar{r}}\right\|_{F}^{2} \leq C_{2}(1+t)^{2} \cdot \sigma^{2} r_{\max }(n+p)
$$

with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

- Similar as in the known σ case!

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction

6 Numerical simulations and conclusion
(7) Supplementary slides

Numerical simulations

- How to numerically choose λ ?

Numerical simulations

- How to numerically choose λ ?
- We derive explicit and fast to calculate procedures !

Numerical simulations

- How to numerically choose λ ?
- We derive explicit and fast to calculate procedures !
- Great numerical performances in various settings.

What's next?

- What if we observe a collection of matrices $\left(Y_{i}, X_{i}\right)$?

What's next ?

- What if we observe a collection of matrices $\left(Y_{i}, X_{i}\right)$?
- What if we model a matrix autoregressive process with the $2 M R$ model $Y_{t+1}=A^{*} Y_{t} B^{*}+E_{t}$?

What's next ?

- What if we observe a collection of matrices $\left(Y_{i}, X_{i}\right)$?
- What if we model a matrix autoregressive process with the 2 MR model $Y_{t+1}=A^{*} Y_{t} B^{*}+E_{t}$?
- What if we impose other sparsity assumptions on A^{*} and B^{*} ?

END

Thanks for listening !

Table of Contents

(1) Introduction
(2) Framework
(3) Prediction for given ranks

4 Rank-adaptive prediction
(5) Data-driven rank-adaptive prediction
(6) Numerical simulations and conclusion
(7) Supplementary slides

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

$$
r_{M}(\lambda)=1 \vee \sum_{k=1}^{\text {rank } M} \mathbf{1}_{\sigma_{k}(M)^{2} \geq \lambda}
$$

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

$$
r_{M}(\lambda)=1 \vee \sum_{k=1}^{\text {rank } M} \mathbf{1}_{\sigma_{k}(M)^{2} \geq \lambda}
$$

It performs a hard thresholding of the singular values !

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

$$
r_{M}(\lambda)=1 \vee \sum_{k=1}^{\text {rank } M} \mathbf{1}_{\sigma_{k}(M)^{2} \geq \lambda}
$$

- If $\lambda>\sigma_{r_{Y}}(Y)^{2}$, there is a unique solution \hat{r} and it is actually the $\lambda-$ rank of Y, i.e. $\hat{r}=r_{Y}(\lambda)$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

$$
r_{M}(\lambda)=1 \vee \sum_{k=1}^{\text {rank } M} \mathbf{1}_{\sigma_{k}(M)^{2} \geq \lambda}
$$

- If $\lambda>\sigma_{r_{Y}}(Y)^{2}$, there is a unique solution \hat{r} and it is actually the $\lambda-$ rank of Y, i.e. $\hat{r}=r_{Y}(\lambda)$.

$$
\hat{r}:=\arg \min _{r \in\left[n \wedge p \wedge r_{x}\right]}\left\{\left\|Y-\hat{A}_{r} X \hat{B}_{r}\right\|_{F}^{2}+\lambda r\right\}
$$

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- Consider the λ-rank of a matrix $M, r_{M}(\lambda)$, as the number of singular values above $\sqrt{\lambda}$.

$$
r_{M}(\lambda)=1 \vee \sum_{k=1}^{\text {rank } M} \mathbf{1}_{\sigma_{k}(M)^{2} \geq \lambda}
$$

- If the λ-rank of the signal $A^{*} X B^{*}$ is well separated, the procedure retrieves it with high probability.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}(\lambda)}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$ and $\sigma_{r^{*}(\lambda)+1}\left(A^{*} X B^{*}\right)^{2}<(1-c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}(\lambda)\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}(\lambda)}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$ and $\sigma_{r^{*}(\lambda)+1}\left(A^{*} X B^{*}\right)^{2}<(1-c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}(\lambda)\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- $r^{*}(\lambda)$ coincides with the true underlying rank r^{*} is equivalent to having $\sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2} \geq \lambda>0$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}(\lambda)}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$ and $\sigma_{r^{*}(\lambda)+1}\left(A^{*} X B^{*}\right)^{2}<(1-c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}(\lambda)\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- $r^{*}(\lambda)$ coincides with the true underlying rank r^{*} is equivalent to having $\sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2} \geq \lambda>0$.
- It is necessary that a signal-to-noise ratio, given here by $\sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2} / \sigma_{1}(E)^{2}$ be significant in order to have the true underlying rank r^{*} selected by \hat{r}.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- In particular, if $\lambda \geq 2 C(n+p) \sigma^{2}(1+t)^{2} / c^{2}$ for some absolute constant $C>0$ and for any $t>0$, then $\hat{r}=r^{*}$ with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- In particular, if $\lambda \geq 2 C(n+p) \sigma^{2}(1+t)^{2} / c^{2}$ for some absolute constant $C>0$ and for any $t>0$, then $\hat{r}=r^{*}$ with probability larger than $1-2 \exp \left(-t^{2}(\sqrt{n}+\sqrt{p})^{2}\right)$.
- The rank selector requires λ to be lower bounded by a function of σ^{2}.

Consistent rank selection

- Can we retrieve the true rank of the signal with high probability ?
- If for some constant c in $(0,1), \sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2}>(1+c)^{2} \lambda$, then

$$
\mathbb{P}\left(\hat{r}=r^{*}\right) \geq \mathbb{P}\left(\|E\|_{o p}^{2} \leq c^{2} \lambda\right)
$$

- The rank selector requires λ to be lower bounded by a function of σ^{2}. What if we don't have access to σ^{2} ?

Simulation context

- Consider $n=100$ and $p=300$ with $Y \in \mathbb{R}^{n \times p}$ together with $m=50$ and $q=60$ with $X \in \mathbb{R}^{m \times q}$.

Simulation context

- Consider $n=100$ and $p=300$ with $Y \in \mathbb{R}^{n \times p}$ together with $m=50$ and $q=60$ with $X \in \mathbb{R}^{m \times q}$.
- We randomly generate three matrices: A^{*}, B^{*}, and X, with independent random gaussian entries with mean 0 and variance 1 .

Simulation context

- Consider $n=100$ and $p=300$ with $Y \in \mathbb{R}^{n \times p}$ together with $m=50$ and $q=60$ with $X \in \mathbb{R}^{m \times q}$.
- We randomly generate three matrices: A^{*}, B^{*}, and X, with independent random gaussian entries with mean 0 and variance 1.
- These matrices are then projected onto the best low-rank matrix approximation, with the matrix A^{*} having a rank $r_{A}^{*}=16$, the matrix B^{*} having a rank $r_{B}^{*}=12$, and the matrix X having a rank $r_{X}=25$.

Simulation context

- Consider $n=100$ and $p=300$ with $Y \in \mathbb{R}^{n \times p}$ together with $m=50$ and $q=60$ with $X \in \mathbb{R}^{m \times q}$.
- We randomly generate three matrices: A^{*}, B^{*}, and X, with independent random gaussian entries with mean 0 and variance 1.
- These matrices are then projected onto the best low-rank matrix approximation, with the matrix A^{*} having a rank $r_{A}^{*}=16$, the matrix B^{*} having a rank $r_{B}^{*}=12$, and the matrix X having a rank $r_{X}=25$.
- The signal matrix is defined as $A^{*} X B^{*}$ and shows a rank of 12 in all experiments.

Simulation context

- Consider $n=100$ and $p=300$ with $Y \in \mathbb{R}^{n \times p}$ together with $m=50$ and $q=60$ with $X \in \mathbb{R}^{m \times q}$.
- We randomly generate three matrices: A^{*}, B^{*}, and X, with independent random gaussian entries with mean 0 and variance 1.
- These matrices are then projected onto the best low-rank matrix approximation, with the matrix A^{*} having a rank $r_{A}^{*}=16$, the matrix B^{*} having a rank $r_{B}^{*}=12$, and the matrix X having a rank $r_{X}=25$.
- The signal matrix is defined as $A^{*} X B^{*}$ and shows a rank of 12 in all experiments.
- We define various settings for the variance σ^{2} of the Gaussian noise E so that the signal-to-noise ratio $S N R:=\sigma_{r^{*}}\left(A^{*} X B^{*}\right)^{2} / \sigma_{1}(E)^{2}$ varies approximately in the range $[0.5,2]$.

Predictor performances

Figure: Evolution of the risk $\frac{\left\|\hat{A}_{r} X \hat{B}_{r}-A^{*} X B^{*}\right\|_{F}^{2}}{\left\|A^{*} X B^{*}\right\|_{F}^{2}}$ in function of r for different values of σ.

Rank recovering

Figure: Evolution of the estimated \hat{r} as a function of $\log (\lambda)$ for different values of σ.

