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Model

Observe repeatedly and independently n samples (X1, . . . ,Xn) of a R-valued time
series of length p.

Given a long stationary time series extract blocs of length p sufficiently far
apart to assume independence.

Σ ∈ S++
p has a Toeplitz structure .

Σ :=



σ0 σ1 σ2 σ3 σ4 · · · σp−1

σ1 σ0 σ1 σ2 σ3 · · · σp−2

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . σ1 σ0 σ1
. . .
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. . .
. . .

. . .
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. . .
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Objective

The objective is to test H0 : Σ = Ip against a set of one-sided F+ or
two-sided F sparse alternatives and provide non asymptotic upper bounds of
the maximal testing risk.

The test procedure needs to be very sensitive to:

1 The moderately sparse case: a relatively large number of very small but
significant covariance values.

2 The highly sparse case: a very small number of significant covariance values.

This is analogous to but more general than the detection of sparse Gaussian
means: Ingster 2001, 2002 (Math. Methods Statist.) and Donoho, Jin 2004
(Ann. Statist.)

We also develop a procedure that selects non-null correlation coefficients.

Numerical results illustrate the excellent behaviour of the test procedures and
the support selector.
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Testing problems

The one-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s,S , σ),

where

F+(s,S , σ) =
{
Σ ∈ S++

p ∩ Tp and ∃C ⊆ {1, . . . ,S},

|C| = s, ∀j ∈ {1, p − 1}, σj ≥ σ > 0, j ∈ C,
σj = 0, j /∈ C

}

The two-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F(s,S , σ),

where F(s,S , σ) is defined similarly as F+(s,S , σ) by considering the
absolute values of the covariance elements.
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Moderately sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tMS+
n,p the

test procedure

∆MS+
n = 1

(
Sum+

{1:S}(Σn − Ip) ≥ tMS+
n,p

)
,

where for an arbitrary set C ⊆ {1, . . . ,S},

Sum+
C (Σn) :=

∑
j∈C

Tr(AjΣn) =
∑
j∈C

σ̂j .

When the alternative is F(s,S , σ), we consider for some threshold tMS
n,p a test

∆MS
n that sums the absolute values of the first S covariance elements of

Σn − Ip and compare it to tMS
n,p .
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C (Σn) :=

∑
j∈C

Tr(AjΣn) =
∑
j∈C

σ̂j .

When the alternative is F(s,S , σ), we consider for some threshold tMS
n,p a test

∆MS
n that sums the absolute values of the first S covariance elements of

Σn − Ip and compare it to tMS
n,p .

Theorem (B., Butucea, Sorba 2022)

For u > 0, consider tMS+
n,p = max

{√
u·S

n(p−S) ,
2u·S

n(p−S)

}
. Then

R(∆MS+
n ,F+) ≤ 2 exp

(
− u

4

)
provided that σ ≥ 2(s+1)

s tMS+
n,p .
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Highly sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 8 / 33



Highly sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 8 / 33
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When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Theorem (B., Butucea, Sorba 2022)

For u > 1, consider tHS+n,p = max

{√
4u·s log (Ss)
n(p−S) ,

8u·s log (Ss)
n(p−S)

}
. Then

R(∆HS+
n ,F+) ≤ exp

(
−(u − 1) log

(
S
s

))
+ exp

(
− u

4

)
provided that

σ ≥ 1
s

(
tHS+n,p + (2s + 1)max

{√
u·s

n(p−S) ,
2u·s

n(p−S)

})
.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 8 / 33



Table of Contents

1 Covariance matrix testing and support recovery: Chap. 2

2 Two-Sided Matrix Regression: Chap. 3
Introduction
Prediction for given ranks
Rank-adaptive and data-driven rank-adaptive procedures

3 Dynamic Topic Model: Chap. 4 & 5

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 9 / 33



Two-sided matrix regression

Two-sided matrix regression (2MR):

2MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rm×q following:

Y = A∗XB∗ + E ,

where (A∗,B∗) ∈ Rn×m × Rq×p are low-rank matrix parameters.

Objective: Learning the signal A∗XB∗.
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The noise matrix E is assumed to have independent centered
σ−sub-Gaussian entries.

Objective: Learning the signal A∗XB∗.
The problem is not convex !
Without additional assumptions, the problem is not identifiable.
Different structured matrix estimation is studied in Klopp, Lu, Tsybakov,
Zhou 2019 (Bernoulli)
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Beyond the limits of the MR

The two-sided matrix regression (2MR) extends the one-sided matrix regression
(MR)

MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rn×q following:

Y = XB∗ + E ,

where B∗ ∈ Rq×p.

Limits: MR cannot handle possible correlations among the rows of Y .
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Beyond the limits of the MR

The two-sided matrix regression (2MR) extends the one-sided matrix regression
(MR)

MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rn×q following:

Y = XB∗ + E ,

where B∗ ∈ Rq×p.
Without any constraint on the structure of B∗ (full rank), the MR is
equivalent to performing p independent linear regressions.
It ignores the multivariate nature of the response, i.e. the possible
correlations among columns of Y .
Solution: impose a low-rank structure on B∗.
Bunea, She, Wegkamp 2011 (Ann. Statist.), Giraud 2011 (Electron. J.
Statist.)

Limits: MR cannot handle possible correlations among the rows of Y .
Need for another matrix parameter A∗ that left multiplies the signal XB∗.
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Minimization of the squared Frobenius norm

If r := rankA∗XB∗ is given, it can be exploited.

Procedure: Build r -dependent explicit predictors satisfying the non-convex
constrained minimization problem:

(Âr , B̂r ) ∈ argmin
A,B:

rankA∧rankB≤r

∥Y − AXB∥2F .

Note: rankA∗XB∗ ≤ min(rankA∗, rankX , rankB∗).

Global idea: Y −→ Yr −→ ÂrXB̂r .

Identifiability: The predictors are not uniquely defined in this setting.
Without further strong assumptions, we cannot hope to learn parameters
from a non identifiable model.
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Identifiability: The predictors are not uniquely defined in this setting.
Without further strong assumptions, we cannot hope to learn parameters
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(Âr , B̂r ) ∈ argmin
A,B:

rankA∧rankB≤r

∥Y − AXB∥2F .

Note: rankA∗XB∗ ≤ min(rankA∗, rankX , rankB∗).

Global idea: Y −→ Yr −→ ÂrXB̂r .
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Diagonal 2MR

The model can be re-written using the SVD of Y and X . This leads to the
Diagonal 2MR (D2MR).
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D2MR is equivalent to 2MR

For any matrices A,B, there is:
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where A0 = U⊤
Y AUX and B0 = V⊤

X BVY .
A and A0 have the same rank, idem for B and B0.
The initial problem is equivalent to finding predictors satisfying

(Â0r , B̂0r ) ∈ argmin
A0,B0:

rankA0∧rankB0≤r

∥ΣY − A0ΣXB0∥2F .
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Solution of D2MR

Objective: Under the constraint rank(A0) ≤ r and rank(B0) ≤ r , minimize:∥∥∥∥∥∥∥∥∥∥∥∥∥∥


σ1(Y )

. . .

σrY (Y )
0


︸ ︷︷ ︸

n×p

−A0


σ1(X )

. . .

σrX (X )
0


︸ ︷︷ ︸

m×q

B0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.

Solution:

Â0r =


σ1(Y )

. . .

σr∧rY (Y )
0


︸ ︷︷ ︸

n×m

, B̂0r =


σ1(X )−1

. . .

σr (X )−1

0


︸ ︷︷ ︸

q×p

.

How far is the predictor Â0rΣX B̂0r from the signal A∗XB∗?
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Oracle inequality in the fixed rank case

Theorem (B., Butucea 2023)

The predictor Â0rΣX B̂0r satisfies for C > 0 and for any t > 0:

∥A∗
0ΣXB

∗
0 − Â0rΣX B̂0r∥2F ≤9 inf

A0,B0:
rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 − A0ΣXB0∥2F

+ Cσ2(1 + t)2 · r(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).

inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ − AXB∥2F =
∑r∗

k=r+1 σk(A
∗XB∗)2 · 1r<r∗ .

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.
From the explicit solutions (Â0r , B̂0r ) we deduce (Âr , B̂r ) solution to the
initial problem:

Âr = UY Â0rU
⊤
X and B̂r = VX B̂0rV

⊤
Y .
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0 − Â0rΣX B̂0r∥2F ≤9 inf

A0,B0:
rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 − A0ΣXB0∥2F

+ Cσ2(1 + t)2 · r(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).

inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ − AXB∥2F =
∑r∗

k=r+1 σk(A
∗XB∗)2 · 1r<r∗ .

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.
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Further results

We derive a rank-adaptive procedure.

It retrieves the true rank of the signal with high probability.

Then we derive predictors that exhibit almost oracle deviation.

Theoretical guarantees require a σ2 dependent lower bound on a hyper
parameter λ.

What can we do if σ is unknown ?
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It retrieves the true rank of the signal with high probability.

Then we derive predictors that exhibit almost oracle deviation.

Theoretical guarantees require a σ2 dependent lower bound on a hyper
parameter λ.

What can we do if σ is unknown ?

We derive a data-driven rank-adaptive procedure free of σ with the same rate as
in the oracle case.
Simulation results confirm the good prediction and the rank consistency results
under data-driven explicit choices of the tuning parameters and the scaling
parameter of the noise.
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Topic models

Given a dictionary of p words we observe n documents.

A document is modeled by Yj , a probability vector in the simplex

Sp−1 = {v ∈ Rp
+ :
∑
j

vj = 1}.

Each Yj contains the frequencies of Nj words. For simplicity, Nj = N, for all
j = 1, . . . , n.

Topic model: There is K ≪ min(n, p) such that a Non-negative Matrix
Factorization (NMF) takes place on Π∗ := (π∗

1 , . . . , π
∗
n):

Π∗ = A∗W ∗,

where A∗ ∈ Rp×K has columns in Sp−1, W
∗ ∈ RK×n has columns in SK−1.

Interpretation:

P(word i |document j) =
K∑

k=1

P(word i |topic k)P(topic k|document j)
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Identifiability

Objective: Estimate A∗ and/or W ∗.

Anchor word assumption: For each topic k ∈ [K ], there exists at least one
word j such that [A∗]jk > 0 and [A∗]jl = 0 for l ∈ [K ]\{k}.
W ∗ is full rank: rank(W ∗) = K .
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Dynamic Topic Model

Batches of n documents are collected in T steps over time.

Model: the topic-document probability matrix W ∗ follows a simplex-valued
stationary autoregressive model of order one and A∗ stays constant.

Objective: Estimation of c∗, θ̃∗ := θ∗

α ∈ SK−1 and α := ∥θ∗∥1.

Dynamic Latent Factors: Π1:T :=
(
Π1, . . . ,ΠT

)
is available where

Πt = A∗W t , t = 1, . . . ,T − 1.

Dynamic Topic Model: Y 1:T :=
(
Y 1, . . . ,Y T

)
is available where

NY t
j |W

t
j ∼ Multinomialp

(
N,A∗W t

j

)
, t = 1, . . . ,T − 1.
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Double randomness: Dirichlet + Multinomial
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Assumptions

Let the topic-topic overlapping matrix measure the affinity of topics using
the same words:

ΣA := (A∗)⊤ H−1A∗,

where H := diag(h1, . . . , hp) and hi := ∥A∗
i.∥1.

Let the topic-topic concurrence matrix

Σ1:T
W :=

1

nT

(
W 1:T

)(
W 1:T

)⊤
,

capture the affinity of topics to be covered together in the same document.
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K

p
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Let the topic-topic concurrence matrix

Σ1:T
W :=

1

nT

(
W 1:T

)(
W 1:T

)⊤
,

capture the affinity of topics to be covered together in the same document.
Assume: λK (Σ

1:T
W ) ≥ c > 0, a.s..

Remark: if mink θ̃
∗
k ≥ c > 0, this holds for large enough n, T with high

probability.
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Assumptions

Assume the following hold

Anchor word assumption

Assumptions on the topic-topic overlapping matrix and the topic-topic
concurrence matrix.

For c and c in (0, 1), c∗ satisfies: c ≤ c∗ ≤ c .

For θ and m in (0, 1) and Σ(θ∗) = 1
α+1

(
diag(θ̃∗)− θ̃∗ · (θ̃∗)⊤

)
, θ∗ satisfies:

min
k∈[K ]

θ̃∗(k) ≥ θ and m ≤ Tr(Σ(θ∗)) ≤ 1.
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Global Procedure

The estimation procedure unfolds as follows in the Dynamic Latent Factors model
(resp. Dynamic Topic Model):

Recover A∗ (resp. estimate A∗ with Â).

Project Π1:T (resp. Y 1:T ) on the linear space spanned by the columns of A∗

(resp. Â) and get a proxy random matrix of the unobserved W 1:T .

Build estimators of

c∗, θ̃∗ :=
θ∗

α
∈ SK−1 and α := ∥θ∗∥1.
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Project Π1:T (resp. Y 1:T ) on the linear space spanned by the columns of A∗
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Tackles word frequency heterogeneity.

SVD: Creates an embedding of the p rows of Π1:T into RK . These p points
are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 26 / 33



Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Tackles word frequency heterogeneity.

SVD: Creates an embedding of the p rows of Π1:T into RK . These p points
are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 26 / 33



Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Tackles word frequency heterogeneity.

SVD: Creates an embedding of the p rows of Π1:T into RK . These p points
are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.
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are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.

Then W 1:T is recovered by projection of Π1:T onto the span of A∗.
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Compute Π∗ := M−1/2
∗ Π1:T where

M∗ = (nT )−1diag
(
Π1:T · 1nT

)
.

SVD: of Π∗ := UΣV⊤ which satisfies rank(Π∗) = K a.s..

Post-SVD normalization: Compute R ∈ Rp×(K−1): for i ∈ [p] and
k ∈ [K − 1],

[R]ik =
[U]i(k+1)

[U]i1
.
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Perron-Frobenius’s theorem guarantees that [U].1 does not possess any null
entry a.s.. The SVD creates a low dimensional word embedding into RK but
these vectors do not directly lead to the recovery of A∗.
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M∗ = (nT )−1diag
(
Π1:T · 1nT

)
.

SVD: of Π∗ := UΣV⊤ which satisfies rank(Π∗) = K a.s..

Post-SVD normalization: Compute R ∈ Rp×(K−1): for i ∈ [p] and
k ∈ [K − 1],

[R]ik =
[U]i(k+1)

[U]i1
.

[R]1., . . . , [R]p. are located in a simplex

Gη :=

{
x : x =

K∑
k=1

αkηk , ∀k ∈ [K ], αk ≥ 0
K∑

k=1

αk = 1

}
.
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps:

Pre-SVD normalization

SVD

Post-SVD normalization

Vertex Hunting: The vertices η1, . . . ,ηK of Gη are recovered by computing
the convex hull of the point cloud [R]1., . . . , [R]p..

Word-topic matrix estimation: Define Γ := M1/2
∗ diag([U].1)Λ. Normalize

each column of Γ by its L1 norm. The resulting matrix is A∗.
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[R]i. =
K∑
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Dynamic Latent Factors: Estimators

We define θ̂, estimator of θ̃∗, as the empirical mean of the recovered(
W t+1

j

)
j,t
:

θ̂ :=
1

n(T − 1)

n∑
j=1

T−1∑
t=1

W t
j .

We estimate 1− c∗ by the normalized sum of scalar products:

̂(1− c) :=

T−1∑
t=1

n∑
j=1

〈
W t+1

j −W
+1

; W t
j − w

〉
T−1∑
t=1

n∑
j=1

∥∥∥W t
j −W

∥∥∥2
2

,

W
+1

:=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

W t+1
j and W :=

1

n(T − 1)

T−1∑
t=1

n∑
j=1

W t
j .
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.

Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get an estimator α̂
of α:
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.

Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get an estimator α̂
of α:

α̂ =
ĉ

2− ĉ

1− ∥θ̂∥22
V

− 1, where V :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥w t
j − w

∥∥2
2
.
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Dynamic Latent Factors: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For any N, n and T large enough, with probability at least 1− C1

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ C2 ·

√
log(nT )

n(T − 1)
,

where C1, C2 > 0 are explicit constants, free of the dimensions appearing in the
model.
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Dynamic Topic Model: Plug-in

Replace Π1:T by the observed frequencies Y 1:T .

Estimate A∗ by Â and build proxy random variables

Ŵ
1:T

= (Â⊤Â)−1Â⊤ · Y 1:T .

Build estimators of c∗, θ̃∗, and α := ∥θ∗∥1, based on Ŵ
1:T

.

1 Deviation of M̂ := (nT )−1diag
(
Y 1:T1nT

)
from

M∗ := (nT )−1diag
(
Π1:T1nT

)
2 Deviation of [Û].1, . . . , [Û].K from [U].1, . . . , [U].K
3 Behaviour of the vertex hunting algorithm with noisy entries.
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Estimate A∗ by Â and build proxy random variables

Ŵ
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Dynamic Topic Model: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, there exists χ, a positive constant only depending

on K , such that with probability at least 1− 8

nT
:

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ χ

√
p log(nT ) + p2

nT (N − 2)
p(1 + p)(1 + max

x∈Gη

∥x∥2).
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Dynamic Topic Model: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, and fixed number of topics K and of the vocabulary

size p, with probability at least 1− C

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
.
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}
≤ O
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√
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N

)
.

The convergence rates show an additive behavior of the noise contained at
different levels in the model.
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Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, and fixed number of topics K and of the vocabulary

size p, with probability at least 1− C

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
.

The convergence rates show an additive behavior of the noise contained at
different levels in the model.
The bounds are driven by the Dirichlet noise and by the multinomial noise.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 33 / 33


	Covariance matrix testing and support recovery: Chap. 2
	Introduction: model and objective
	Procedures and theoretical guarantees

	Two-Sided Matrix Regression: Chap. 3
	Introduction
	Prediction for given ranks
	Rank-adaptive and data-driven rank-adaptive procedures

	Dynamic Topic Model: Chap. 4 & 5
	Introduction: Topic Models, Identifiability, Dynamic.
	Dynamic Latent Factors: Procedure and theoretical guarantees
	Dynamic Topic Model: Procedure and theoretical guarantees


