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Model

Observe repeatedly and independently n samples (X1, . . . ,Xn) of a R-valued time
series of length p.

Given a long stationary time series extract blocs of length p sufficiently far
apart to assume independence.

Σ ∈ S++
p has a Toeplitz structure .

Σ :=



σ0 σ1 σ2 σ3 σ4 · · · σp−1

σ1 σ0 σ1 σ2 σ3 · · · σp−2

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . σ1 σ0 σ1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

σp−2 · · · σ3 σ2 σ1 σ0 σ1

σp−1 · · · σ4 σ3 σ2 σ1 σ0



Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 4 / 33



Model

Observe repeatedly and independently n samples (X1, . . . ,Xn) of a R-valued time
series of length p.

Given a long stationary time series extract blocs of length p sufficiently far
apart to assume independence.

Σ ∈ S++
p has a Toeplitz structure .

Σ :=



σ0 σ1 σ2 σ3 σ4 · · · σp−1

σ1 σ0 σ1 σ2 σ3 · · · σp−2

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . σ1 σ0 σ1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

σp−2 · · · σ3 σ2 σ1 σ0 σ1

σp−1 · · · σ4 σ3 σ2 σ1 σ0



Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 4 / 33



Model

Observe repeatedly and independently n samples (X1, . . . ,Xn) of a R-valued time
series of length p.

Given a long stationary time series extract blocs of length p sufficiently far
apart to assume independence.

Consider X a generic p−dimensional gaussian vector such that X ∼ Np(0,Σ).

Σ ∈ S++
p has a Toeplitz structure .

Σ :=



σ0 σ1 σ2 σ3 σ4 · · · σp−1

σ1 σ0 σ1 σ2 σ3 · · · σp−2

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . σ1 σ0 σ1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

σp−2 · · · σ3 σ2 σ1 σ0 σ1

σp−1 · · · σ4 σ3 σ2 σ1 σ0



Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 4 / 33



Model

Observe repeatedly and independently n samples (X1, . . . ,Xn) of a R-valued time
series of length p.

Given a long stationary time series extract blocs of length p sufficiently far
apart to assume independence.

Consider X a generic p−dimensional gaussian vector such that X ∼ Np(0,Σ).

Σ ∈ S++
p has a Toeplitz structure .

Σ :=



σ0 σ1 σ2 σ3 σ4 · · · σp−1

σ1 σ0 σ1 σ2 σ3 · · · σp−2

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . σ1 σ0 σ1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

σp−2 · · · σ3 σ2 σ1 σ0 σ1

σp−1 · · · σ4 σ3 σ2 σ1 σ0



Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 4 / 33



Objective

The objective is to test H0 : Σ = Ip against a set of one-sided F+ or
two-sided F sparse alternatives and provide non asymptotic upper bounds of
the maximal testing risk.

The test procedure needs to be very sensitive to:

1 The moderately sparse case: a relatively large number of very small but
significant covariance values.

2 The highly sparse case: a very small number of significant covariance values.

This is analogous to but more general than the detection of sparse Gaussian
means: Ingster 2001, 2002 (Math. Methods Statist.) and Donoho, Jin 2004
(Ann. Statist.)

We also develop a procedure that selects non-null correlation coefficients.

Numerical results illustrate the excellent behaviour of the test procedures and
the support selector.
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Testing problems

The one-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s,S , σ),

where

F+(s,S , σ) =
{
Σ ∈ S++

p ∩ Tp and ∃C ⊆ {1, . . . ,S},

|C| = s, ∀j ∈ {1, p − 1}, σj ≥ σ > 0, j ∈ C,
σj = 0, j /∈ C

}

The two-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F(s,S , σ),

where F(s,S , σ) is defined similarly as F+(s,S , σ) by considering the
absolute values of the covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 6 / 33



Testing problems

The one-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s,S , σ),

where

F+(s,S , σ) =
{
Σ ∈ S++

p ∩ Tp and ∃C ⊆ {1, . . . ,S},

|C| = s, ∀j ∈ {1, p − 1}, σj ≥ σ > 0, j ∈ C,
σj = 0, j /∈ C

}

The two-sided test problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F(s,S , σ),

where F(s,S , σ) is defined similarly as F+(s,S , σ) by considering the
absolute values of the covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 6 / 33



Moderately sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tMS+
n,p the

test procedure

∆MS+
n = 1

(
Sum+

{1:S}(Σn − Ip) ≥ tMS+
n,p

)
,

where for an arbitrary set C ⊆ {1, . . . ,S},

Sum+
C (Σn) :=

∑
j∈C

Tr(AjΣn) =
∑
j∈C

σ̂j .

When the alternative is F(s,S , σ), we consider for some threshold tMS
n,p a test

∆MS
n that sums the absolute values of the first S covariance elements of

Σn − Ip and compare it to tMS
n,p .
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C (Σn) :=

∑
j∈C

Tr(AjΣn) =
∑
j∈C

σ̂j .

When the alternative is F(s,S , σ), we consider for some threshold tMS
n,p a test

∆MS
n that sums the absolute values of the first S covariance elements of

Σn − Ip and compare it to tMS
n,p .

Theorem (B., Butucea, Sorba 2022)

For u > 0, consider tMS+
n,p = max

{√
u·S

n(p−S) ,
2u·S

n(p−S)

}
. Then

R(∆MS+
n ,F+) ≤ 2 exp

(
− u

4

)
provided that σ ≥ 2(s+1)

s tMS+
n,p .
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Highly sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 8 / 33



Highly sparse case in the one-sided alternative

When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 8 / 33
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When the alternative is F+(s,S , σ), we consider for some threshold tHS+n,p the
test procedure

∆HS+
n = max

C⊆{1,...,S},#C=s
1
(
Sum+

C (Σn − Ip) ≥ tHS+n,p

)
.

When the alternative is F(s,S , σ), we examine the same procedure by
considering the absolute values of the empirical covariance elements.

Theorem (B., Butucea, Sorba 2022)

For u > 1, consider tHS+n,p = max

{√
4u·s log (Ss)
n(p−S) ,

8u·s log (Ss)
n(p−S)

}
. Then

R(∆HS+
n ,F+) ≤ exp

(
−(u − 1) log

(
S
s

))
+ exp

(
− u

4

)
provided that

σ ≥ 1
s

(
tHS+n,p + (2s + 1)max

{√
u·s

n(p−S) ,
2u·s

n(p−S)

})
.
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Two-sided matrix regression

Two-sided matrix regression (2MR):

2MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rm×q following:

Y = A∗XB∗ + E ,

where (A∗,B∗) ∈ Rn×m × Rq×p are low-rank matrix parameters.

Objective: Learning the signal A∗XB∗.
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where (A∗,B∗) ∈ Rn×m × Rq×p are low-rank matrix parameters.
The noise matrix E is assumed to have independent centered
σ−sub-Gaussian entries.

Objective: Learning the signal A∗XB∗.
The problem is not convex !
Without additional assumptions, the problem is not identifiable.
Different structured matrix estimation is studied in Klopp, Lu, Tsybakov,
Zhou 2019 (Bernoulli)
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Beyond the limits of the MR

The two-sided matrix regression (2MR) extends the one-sided matrix regression
(MR)

MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rn×q following:

Y = XB∗ + E ,

where B∗ ∈ Rq×p.

Limits: MR cannot handle possible correlations among the rows of Y .
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Beyond the limits of the MR

The two-sided matrix regression (2MR) extends the one-sided matrix regression
(MR)

MR: Consider an observed target matrix Y ∈ Rn×p and an observed design
matrix X ∈ Rn×q following:

Y = XB∗ + E ,

where B∗ ∈ Rq×p.
Without any constraint on the structure of B∗ (full rank), the MR is
equivalent to performing p independent linear regressions.
It ignores the multivariate nature of the response, i.e. the possible
correlations among columns of Y .
Solution: impose a low-rank structure on B∗.
Bunea, She, Wegkamp 2011 (Ann. Statist.), Giraud 2011 (Electron. J.
Statist.)

Limits: MR cannot handle possible correlations among the rows of Y .
Need for another matrix parameter A∗ that left multiplies the signal XB∗.
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Minimization of the squared Frobenius norm

If r := rankA∗XB∗ is given, it can be exploited.

Procedure: Build r -dependent explicit predictors satisfying the non-convex
constrained minimization problem:

(Âr , B̂r ) ∈ argmin
A,B:

rankA∧rankB≤r

∥Y − AXB∥2F .

Note: rankA∗XB∗ ≤ min(rankA∗, rankX , rankB∗).

Global idea: Y −→ Yr −→ ÂrXB̂r .

Identifiability: The predictors are not uniquely defined in this setting.
Without further strong assumptions, we cannot hope to learn parameters
from a non identifiable model.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 12 / 33



Minimization of the squared Frobenius norm

If r := rankA∗XB∗ is given, it can be exploited. Fix r ∈ [n ∧ p ∧ rX ] where
rX = rankX .

Procedure: Build r -dependent explicit predictors satisfying the non-convex
constrained minimization problem:
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Diagonal 2MR

The model can be re-written using the SVD of Y and X . This leads to the
Diagonal 2MR (D2MR).
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D2MR is equivalent to 2MR

For any matrices A,B, there is:
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because the Frobenius norm being invariant by multiplication of orthogonal
matrices.
This leads to:

∥Y − AXB∥2F = ∥ΣY − A0ΣXB0∥2F ,

where A0 = U⊤
Y AUX and B0 = V⊤

X BVY .
A and A0 have the same rank, idem for B and B0.
The initial problem is equivalent to finding predictors satisfying

(Â0r , B̂0r ) ∈ argmin
A0,B0:

rankA0∧rankB0≤r

∥ΣY − A0ΣXB0∥2F .
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Solution of D2MR

Objective: Under the constraint rank(A0) ≤ r and rank(B0) ≤ r , minimize:∥∥∥∥∥∥∥∥∥∥∥∥∥∥


σ1(Y )

. . .

σrY (Y )
0


︸ ︷︷ ︸

n×p

−A0


σ1(X )

. . .

σrX (X )
0


︸ ︷︷ ︸

m×q

B0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.

Solution:

Â0r =


σ1(Y )

. . .

σr∧rY (Y )
0


︸ ︷︷ ︸

n×m

, B̂0r =


σ1(X )−1

. . .

σr (X )−1

0


︸ ︷︷ ︸

q×p

.

How far is the predictor Â0rΣX B̂0r from the signal A∗XB∗?
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Â0r =


σ1(Y )

. . .

σr∧rY (Y )
0


︸ ︷︷ ︸

n×m

, B̂0r =


σ1(X )−1

. . .

σr (X )−1

0


︸ ︷︷ ︸

q×p

.
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Oracle inequality in the fixed rank case

Theorem (B., Butucea 2023)

The predictor Â0rΣX B̂0r satisfies for C > 0 and for any t > 0:

∥A∗
0ΣXB

∗
0 − Â0rΣX B̂0r∥2F ≤9 inf

A0,B0:
rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 − A0ΣXB0∥2F

+ Cσ2(1 + t)2 · r(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).

inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ − AXB∥2F =
∑r∗

k=r+1 σk(A
∗XB∗)2 · 1r<r∗ .

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.
From the explicit solutions (Â0r , B̂0r ) we deduce (Âr , B̂r ) solution to the
initial problem:

Âr = UY Â0rU
⊤
X and B̂r = VX B̂0rV

⊤
Y .
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0 − Â0rΣX B̂0r∥2F ≤9 inf

A0,B0:
rankA0∧rankB0≤r

∥A∗
0ΣXB

∗
0 − A0ΣXB0∥2F

+ Cσ2(1 + t)2 · r(n + p),

with probability larger than 1− 2 exp(−t2(
√
n +

√
p)2).

inf
A,B:

rankA∧rankB≤r

∥A∗XB∗ − AXB∥2F =
∑r∗

k=r+1 σk(A
∗XB∗)2 · 1r<r∗ .

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.

O (r(n + p)) is the minimax optimal rate in the (one-sided) matrix regression
(MR) model.
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initial problem:
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Further results

We derive a rank-adaptive procedure.

It retrieves the true rank of the signal with high probability.

Then we derive predictors that exhibit almost oracle deviation.

Theoretical guarantees require a σ2 dependent lower bound on a hyper
parameter λ.

What can we do if σ is unknown ?
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Further results

We derive a rank-adaptive procedure.

It retrieves the true rank of the signal with high probability.

Then we derive predictors that exhibit almost oracle deviation.

Theoretical guarantees require a σ2 dependent lower bound on a hyper
parameter λ.

What can we do if σ is unknown ?

We derive a data-driven rank-adaptive procedure free of σ with the same rate as
in the oracle case.
Simulation results confirm the good prediction and the rank consistency results
under data-driven explicit choices of the tuning parameters and the scaling
parameter of the noise.
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Topic models

Given a dictionary of p words we observe n documents.

A document is modeled by Yj , a probability vector in the simplex

Sp−1 = {v ∈ Rp
+ :
∑
j

vj = 1}.

Each Yj contains the frequencies of Nj words. For simplicity, Nj = N, for all
j = 1, . . . , n.

Topic model: There is K ≪ min(n, p) such that a Non-negative Matrix
Factorization (NMF) takes place on Π∗ := (π∗

1 , . . . , π
∗
n):

Π∗ = A∗W ∗,

where A∗ ∈ Rp×K has columns in Sp−1, W
∗ ∈ RK×n has columns in SK−1.

Interpretation:

P(word i |document j) =
K∑

k=1

P(word i |topic k)P(topic k|document j)
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∑
j

vj = 1}.

Each Yj contains the frequencies of Nj words. For simplicity, Nj = N, for all
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Identifiability

Objective: Estimate A∗ and/or W ∗.

Anchor word assumption: For each topic k ∈ [K ], there exists at least one
word j such that [A∗]jk > 0 and [A∗]jl = 0 for l ∈ [K ]\{k}.
W ∗ is full rank: rank(W ∗) = K .
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Dynamic Topic Model

Batches of n documents are collected in T steps over time.

Model: the topic-document probability matrix W ∗ follows a simplex-valued
stationary autoregressive model of order one and A∗ stays constant.

Objective: Estimation of c∗, θ̃∗ := θ∗

α ∈ SK−1 and α := ∥θ∗∥1.

Dynamic Latent Factors: Π1:T :=
(
Π1, . . . ,ΠT

)
is available where

Πt = A∗W t , t = 1, . . . ,T − 1.

Dynamic Topic Model: Y 1:T :=
(
Y 1, . . . ,Y T

)
is available where

NY t
j |W

t
j ∼ Multinomialp

(
N,A∗W t

j

)
, t = 1, . . . ,T − 1.
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Assumptions

Let the topic-topic overlapping matrix measure the affinity of topics using
the same words:

ΣA := (A∗)⊤ H−1A∗,

where H := diag(h1, . . . , hp) and hi := ∥A∗
i.∥1.

Let the topic-topic concurrence matrix

Σ1:T
W :=

1

nT

(
W 1:T

)(
W 1:T

)⊤
,

capture the affinity of topics to be covered together in the same document.
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Let the topic-topic concurrence matrix

Σ1:T
W :=

1

nT

(
W 1:T

)(
W 1:T

)⊤
,

capture the affinity of topics to be covered together in the same document.
Assume: λK (Σ

1:T
W ) ≥ c > 0, a.s..

Remark: if mink θ̃
∗
k ≥ c > 0, this holds for large enough n, T with high

probability.
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Assumptions

Assume the following hold

Anchor word assumption

Assumptions on the topic-topic overlapping matrix and the topic-topic
concurrence matrix.

For c and c in (0, 1), c∗ satisfies: c ≤ c∗ ≤ c .

For θ and m in (0, 1) and Σ(θ∗) = 1
α+1

(
diag(θ̃∗)− θ̃∗ · (θ̃∗)⊤

)
, θ∗ satisfies:

min
k∈[K ]

θ̃∗(k) ≥ θ and m ≤ Tr(Σ(θ∗)) ≤ 1.
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Global Procedure

The estimation procedure unfolds as follows in the Dynamic Latent Factors model
(resp. Dynamic Topic Model):

Recover A∗ (resp. estimate A∗ with Â).

Project Π1:T (resp. Y 1:T ) on the linear space spanned by the columns of A∗

(resp. Â) and get a proxy random matrix of the unobserved W 1:T .

Build estimators of

c∗, θ̃∗ :=
θ∗

α
∈ SK−1 and α := ∥θ∗∥1.
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(resp. Â) and get a proxy random matrix of the unobserved W 1:T .

Build estimators of

c∗, θ̃∗ :=
θ∗

α
∈ SK−1 and α := ∥θ∗∥1.
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Tackles word frequency heterogeneity.

SVD: Creates an embedding of the p rows of Π1:T into RK . These p points
are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.
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Pre-SVD normalization: Tackles word frequency heterogeneity.

SVD: Creates an embedding of the p rows of Π1:T into RK . These p points
are contained in a cone. The anchor words are located on its supporting rays.

Post-SVD normalization: Normalize the p points to ensure they are now
contained in a simplex.

Vertex Hunting: Recover the simplex by computing the convex hull of the p
points.

Word-topic matrix recovery: Using that each column of A∗ has unit L1
norm allows the recovery.

Then W 1:T is recovered by projection of Π1:T onto the span of A∗.
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps (Ke, Wang 2024):

Pre-SVD normalization: Compute Π∗ := M−1/2
∗ Π1:T where

M∗ = (nT )−1diag
(
Π1:T · 1nT

)
.

SVD: of Π∗ := UΣV⊤ which satisfies rank(Π∗) = K a.s..

Post-SVD normalization: Compute R ∈ Rp×(K−1): for i ∈ [p] and
k ∈ [K − 1],

[R]ik =
[U]i(k+1)

[U]i1
.
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entry a.s.. The SVD creates a low dimensional word embedding into RK but
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M∗ = (nT )−1diag
(
Π1:T · 1nT

)
.

SVD: of Π∗ := UΣV⊤ which satisfies rank(Π∗) = K a.s..

Post-SVD normalization: Compute R ∈ Rp×(K−1): for i ∈ [p] and
k ∈ [K − 1],

[R]ik =
[U]i(k+1)

[U]i1
.

[R]1., . . . , [R]p. are located in a simplex

Gη :=

{
x : x =

K∑
k=1

αkηk , ∀k ∈ [K ], αk ≥ 0
K∑

k=1

αk = 1

}
.
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Dynamic Latent Factors: recovering of A∗

Given Π1:T , A∗ is exactly recovered following these steps:

Pre-SVD normalization

SVD

Post-SVD normalization

Vertex Hunting: The vertices η1, . . . ,ηK of Gη are recovered by computing
the convex hull of the point cloud [R]1., . . . , [R]p..

Word-topic matrix estimation: Define Γ := M1/2
∗ diag([U].1)Λ. Normalize

each column of Γ by its L1 norm. The resulting matrix is A∗.
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Dynamic Latent Factors: Estimators

We define θ̂, estimator of θ̃∗, as the empirical mean of the recovered(
W t+1

j

)
j,t
:

θ̂ :=
1

n(T − 1)

n∑
j=1

T−1∑
t=1

W t
j .

We estimate 1− c∗ by the normalized sum of scalar products:

̂(1− c) :=

T−1∑
t=1

n∑
j=1

〈
W t+1

j −W
+1

; W t
j − w

〉
T−1∑
t=1

n∑
j=1

∥∥∥W t
j −W

∥∥∥2
2

,

W
+1

:=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

W t+1
j and W :=

1

n(T − 1)

T−1∑
t=1

n∑
j=1

W t
j .
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.

Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get an estimator α̂
of α:
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Dynamic Latent Factors: Estimators

Using the variance of the stationary sequence and the explicit expression of the
matrix Σ, we see that:

Tr(V(w t
j )) =

c∗

2− c∗
1− ∥θ̃∗∥22
α+ 1

.

Thus, we plug-in estimators θ̂, ĉ and the empirical variance to get an estimator α̂
of α:

α̂ =
ĉ

2− ĉ

1− ∥θ̂∥22
V

− 1, where V :=
1

n(T − 1)

T−1∑
t=1

n∑
j=1

∥∥w t
j − w

∥∥2
2
.
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Dynamic Latent Factors: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For any N, n and T large enough, with probability at least 1− C1

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ C2 ·

√
log(nT )

n(T − 1)
,

where C1, C2 > 0 are explicit constants, free of the dimensions appearing in the
model.

Nayel, Bettache Matrix-valued Time Series in High Dimension July 5, 2024 31 / 33



Dynamic Topic Model: Plug-in

Replace Π1:T by the observed frequencies Y 1:T .

Estimate A∗ by Â and build proxy random variables

Ŵ
1:T

= (Â⊤Â)−1Â⊤ · Y 1:T .

Build estimators of c∗, θ̃∗, and α := ∥θ∗∥1, based on Ŵ
1:T

.

1 Deviation of M̂ := (nT )−1diag
(
Y 1:T1nT

)
from

M∗ := (nT )−1diag
(
Π1:T1nT

)
2 Deviation of [Û].1, . . . , [Û].K from [U].1, . . . , [U].K
3 Behaviour of the vertex hunting algorithm with noisy entries.
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Ŵ
1:T
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Estimate A∗ by Â and build proxy random variables

Ŵ
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Dynamic Topic Model: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, there exists χ, a positive constant only depending

on K, such that with probability at least 1− 8

nT
:

p∑
i=1

∥∥∥[Â]i. − [A∗]i.

∥∥∥
1
≤ χ

√
p log(nT ) + p2

nT (N − 2)
p(1 + p)(1 + max

x∈Gη

∥x∥2).
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Dynamic Topic Model: Theoretical guarantees

Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, and fixed number of topics K and of the vocabulary

size p, with probability at least 1− C

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
.
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≤ O
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)
.

The convergence rates show an additive behavior of the noise contained at
different levels in the model.
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Theorem (B., Butucea, Ke 2024)

For N, n and T large enough, and fixed number of topics K and of the vocabulary

size p, with probability at least 1− C

nT
:

max
{∥∥∥θ̂ − θ̃∗

∥∥∥
2
, | ̂(1− c)− (1− c∗)|, |α̂− α∗|

}
≤ O

(√
log(nT )

n(T − 1)
+

√
log(nT )

N

)
.

The convergence rates show an additive behavior of the noise contained at
different levels in the model.
The bounds are driven by the Dirichlet noise and by the multinomial noise.
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